Minimum size of a graph or digraph of given radius

被引:8
|
作者
Dankelmann, Peter [1 ]
Volkmann, Lutz [2 ]
机构
[1] Univ KwaZulu Natal, Sch Math Sci, ZA-4000 Durban, South Africa
[2] Rhein Westfal TH Aachen, Lehrstuhl Math 2, D-52056 Aachen, Germany
关键词
Interconnection networks; Graph; Digraph; Radius; Minimum degree; Size;
D O I
10.1016/j.ipl.2009.06.001
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we show that a connected graph of order n, radius r and minimum degree delta has at least 1/2 (delta n + (n-1)(delta-2)/(delta-1)(r)-1) edges, for n large enough, and this bound is sharp. We also present a similar result for digraphs. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:971 / 973
页数:3
相关论文
共 50 条
  • [31] Spectral radius of graphs with given size and odd girth
    Lou, Zhenzhen
    Lu, Lu
    Huang, Xueyi
    ELECTRONIC JOURNAL OF COMBINATORICS, 2024, 31 (01):
  • [32] Spectral radius of graphs of given size with forbidden subgraphs
    Liu, Yuxiang
    Wang, Ligong
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2024, 689 : 108 - 125
  • [33] The minimum size of graphs with given rainbow index
    Liu, Thomas Y. H.
    UTILITAS MATHEMATICA, 2018, 108 : 239 - 252
  • [34] On the minimum size of graphs with given generalized connectivity
    Zhao, Shu-Li
    Li, Hengzhe
    Chang, Jou-Ming
    DISCRETE APPLIED MATHEMATICS, 2024, 355 : 88 - 95
  • [35] On the least size of a graph with a given degree set
    Tripathi, Amitabha
    Vijay, Sujith
    DISCRETE APPLIED MATHEMATICS, 2006, 154 (17) : 2530 - 2536
  • [36] THE MINIMUM SPECTRAL RADIUS OF SIGNLESS LAPLACIAN OF GRAPHS WITH A GIVEN CLIQUE NUMBER
    Su, Li
    Li, Hong-Hai
    Zhang, Jing
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2014, 34 (01) : 95 - 102
  • [37] THE MINIMUM ε-SPECTRAL RADIUS OF t-CLIQUE TREES WITH GIVEN DIAMETER
    Qiu, Zhengping
    Deng, Hanyuan
    Tang, Zikai
    TRANSACTIONS ON COMBINATORICS, 2024, 13 (03) : 235 - 255
  • [38] The minimum signless Laplacian spectral radius of graphs with given independence number
    Li, Ruilin
    Shi, Jinsong
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 433 (8-10) : 1614 - 1622
  • [39] On the skew Laplacian spectral radius of a digraph
    Chat, Bilal A.
    Ganie, Hilal A.
    Bhat, Altaf A.
    Bhat, Mohd Y.
    Lone, Mehraj A.
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2022, 14 (05)
  • [40] A lower bound for the spectral radius of a digraph
    Gudino, E.
    Rada, J.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 433 (01) : 233 - 240