Minimum size of a graph or digraph of given radius

被引:8
|
作者
Dankelmann, Peter [1 ]
Volkmann, Lutz [2 ]
机构
[1] Univ KwaZulu Natal, Sch Math Sci, ZA-4000 Durban, South Africa
[2] Rhein Westfal TH Aachen, Lehrstuhl Math 2, D-52056 Aachen, Germany
关键词
Interconnection networks; Graph; Digraph; Radius; Minimum degree; Size;
D O I
10.1016/j.ipl.2009.06.001
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we show that a connected graph of order n, radius r and minimum degree delta has at least 1/2 (delta n + (n-1)(delta-2)/(delta-1)(r)-1) edges, for n large enough, and this bound is sharp. We also present a similar result for digraphs. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:971 / 973
页数:3
相关论文
共 50 条
  • [1] THE MINIMUM SIZE OF A GRAPH WITH GIVEN TREE CONNECTIVITY
    Sun, Yuefang
    Sheng, Bin
    Jin, Zemin
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2021, 41 (02) : 409 - 425
  • [2] On the minimum spectral radius of connected graphs of given order and size
    Cioaba, Sebastian M.
    Gupta, Vishal
    Marques, Celso
    SPECIAL MATRICES, 2024, 12 (01):
  • [3] FINDING A MINIMUM EQUIVALENT GRAPH OF A DIGRAPH
    MARTELLO, S
    TOTH, P
    NETWORKS, 1982, 12 (02) : 89 - 100
  • [4] AN ALGORITHM FOR FINDING A MINIMUM EQUIVALENT GRAPH OF A DIGRAPH
    MOYLES, DM
    THOMPSON, GL
    JOURNAL OF THE ACM, 1969, 16 (03) : 455 - &
  • [5] NUMBER OF EDGES IN A GRAPH OF A GIVEN RADIUS
    VIZING, VG
    DOKLADY AKADEMII NAUK SSSR, 1967, 173 (06): : 1245 - &
  • [6] The minimum restricted edge-connected graph and the minimum size of graphs with a given edge-degree
    Yang, Weihua
    Tian, Yingzhi
    Li, Hengzhe
    Li, Hao
    Guo, Xiaofeng
    DISCRETE APPLIED MATHEMATICS, 2014, 167 : 304 - 309
  • [7] On size, radius and minimum degree
    Mukwembi, Simon
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2014, 16 (01): : 1 - 5
  • [8] MINIMUM BLOCK CONTAINING A GIVEN GRAPH
    PLESNIK, J
    ARCHIV DER MATHEMATIK, 1976, 27 (06) : 668 - 672
  • [9] The number of edges in a bipartite graph of given radius
    Dankelmann, P.
    Swart, Henda C.
    van den Berg, P.
    DISCRETE MATHEMATICS, 2011, 311 (8-9) : 690 - 698
  • [10] Maximum size of digraphs of given radius
    Cambie, Stijn
    DISCRETE MATHEMATICS, 2023, 346 (08)