Surface Modification Strategy for Enhanced NO2 Capture in Metal-Organic Frameworks

被引:6
|
作者
Raptis, Dionysios [1 ]
Livas, Charalampos [1 ]
Stavroglou, George [1 ]
Giappa, Rafaela Maria [1 ,2 ]
Tylianakis, Emmanuel [2 ]
Stergiannakos, Taxiarchis [1 ]
Froudakis, George E. [1 ]
机构
[1] Univ Crete, Dept Chem, Voutes Campus, GR-71003 Iraklion, Crete, Greece
[2] Univ Crete, Dept Mat Sci & Technol, Voutes Campus, GR-71003 Iraklion, Crete, Greece
来源
MOLECULES | 2022年 / 27卷 / 11期
关键词
metal-organic frameworks (MOFs); nitrogen dioxide (NO2); adsorption; density functional theory (DFT); grand canonical Monte Carlo (GCMC); functional group (FG); NITROGEN-DIOXIDE; HYDROGEN STORAGE; FORCE-FIELD; BASIS-SETS; AB-INITIO; ADSORPTION; DENSITY; FUNCTIONALIZATION; CO2; SEPARATION;
D O I
10.3390/molecules27113448
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The interaction strength of nitrogen dioxide (NO2) with a set of 43 functionalized benzene molecules was investigated by performing density functional theory (DFT) calculations. The functional groups under study were strategically selected as potential modifications of the organic linker of existing metal-organic frameworks (MOFs) in order to enhance their uptake of NO2 molecules. Among the functional groups considered, the highest interaction energy with NO2 (5.4 kcal/mol) was found for phenyl hydrogen sulfate (-OSO3H) at the RI-DSD-BLYP/def2-TZVPP level of theory-an interaction almost three times larger than the corresponding binding energy for non-functionalized benzene (2.0 kcal/mol). The groups with the strongest NO2 interactions (-OSO3H, -PO3H2, -OPO3H2) were selected for functionalizing the linker of IRMOF-8 and investigating the trend in their NO2 uptake capacities with grand canonical Monte Carlo (GCMC) simulations at ambient temperature for a wide pressure range. The predicted isotherms show a profound enhancement of the NO2 uptake with the introduction of the strongly-binding functional groups in the framework, rendering them promising modification candidates for improving the NO2 uptake performance not only in MOFs but also in various other porous materials.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Molecular modeling of metal-organic frameworks for CO2 capture
    Snurr, Randall Q.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 248
  • [32] A Strategy for Synthesis of Ionic Metal-Organic Frameworks
    Han, Lijun
    Zhang, Suojiang
    Wang, Yibo
    Yan, Xingjuan
    Lu, Xingmei
    INORGANIC CHEMISTRY, 2009, 48 (03) : 786 - 788
  • [33] Synthesis strategies of metal-organic frameworks for CO2 2 capture
    Sun, Meng
    Wang, Xiaokang
    Gao, Fei
    Xu, Mingming
    Fan, Weidong
    Xu, Ben
    Sun, Daofeng
    MICROSTRUCTURES, 2023, 3 (04):
  • [34] Enhanced polymer compatibility via modification of metal-organic frameworks for enhanced chemical biological protection
    Peterson, Greg
    Epps, Thomas
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 258
  • [35] Recent Advances in Carbon Capture with Metal-Organic Frameworks
    Stylianou, Kyriakos C.
    Queen, Wendy L.
    CHIMIA, 2015, 69 (05) : 274 - 283
  • [36] Trace Carbon Dioxide Capture by Metal-Organic Frameworks
    Liu, Jia
    Wei, Yajuan
    Zhao, Yanli
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2019, 7 (01): : 82 - 93
  • [37] Post-Synthetic Surface Modification of Metal-Organic Frameworks and Their Potential Applications
    Figueroa-Quintero, Leidy
    Villalgordo-Hernandez, David
    Delgado-Marin, Jose J.
    Narciso, Javier
    Velisoju, Vijay Kumar
    Castano, Pedro
    Gascon, Jorge
    Ramos-Fernandez, Enrique V.
    SMALL METHODS, 2023, 7 (04):
  • [38] Efficient carbon capture in metal-organic frameworks (MOFs)
    Yildirim, Taner
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2012, 243
  • [39] Decorated traditional cellulose with nanoscale chiral metal-organic frameworks for enhanced enantioselective capture
    Guo, Yun
    Zhang, Ling
    Wang, Kexuan
    Yu, Ajuan
    Zhang, Shusheng
    Ouyang, Gangfeng
    CHEMICAL COMMUNICATIONS, 2021, 57 (80) : 10343 - 10346
  • [40] Enhanced Carbon Dioxide Capture from Diluted Streams with Functionalized Metal-Organic Frameworks
    Gladysiak, Andrzej
    Song, Ah-Young
    Vismara, Rebecca
    Waite, Madison
    Alghoraibi, Nawal M.
    Alahmed, Ammar H.
    Younes, Mourad
    Huang, Hongliang
    Reimer, Jeffrey A.
    Stylianou, Kyriakos C.
    JACS AU, 2024, 4 (11): : 4527 - 4536