Tribological behaviour of 316L stainless steel additively manufactured by laser powder bed fusion and processed via high-pressure torsion

被引:18
|
作者
Yusuf, Shahir Mohd [1 ]
Lim, Daryl [1 ]
Chen, Ying [2 ]
Yang, Shoufeng [1 ,3 ]
Gao, Nong [1 ]
机构
[1] Univ Southampton, Fac Engn & Phys Sci, Mat Res Grp, Southampton SO17 1BJ, Hants, England
[2] Xiamen Univ Technol, Fujian Prov Key Lab Funct Mat & Applicat, Xiamen 361024, Peoples R China
[3] Katholieke Univ Leuven KU Leuven, Dept Mech Engn, Prod Engn Machine Design & Automat Sect, B-3001 Leuven, Belgium
基金
美国国家科学基金会;
关键词
Tribology; Dry sliding wear; Pin-on-disk; Wear mechanisms; Laser powder bed fusion; High-pressure torsion; ABRASIVE WEAR; MICROSTRUCTURE; EVOLUTION; FRICTION; SURFACES; STRENGTH; HARDNESS;
D O I
10.1016/j.jmatprotec.2020.116985
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
For the first time, the tribological behaviour of 316 L stainless steel (316 L SS) additively manufactured via laser powder bed fusion (L-PBF) with ultrafine- and nano-grains obtained from high-pressure torsion (HPT) processing has been investigated. The pin-on-disk dry sliding wear test results demonstrate enhancement wear performance after HPT processing, as indicated by the consistently lower coefficient of friction (COF), mass loss, m and specific wear rate, k values than the as-received state. The improvement in overall wear resistance could be attributed to the significantly high hardness obtained due to the nano-scale grain refinement with increasing torsional strains. Microscopy analysis suggests that the wear mechanism transitioned from severe abrasive wear before HPT to a combination of mild abrasive, adhesive, and tribo-oxidative wear after HPT.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Influence of surface roughness on laser ultrasonic detection for laser powder bed fusion manufactured 316L stainless steel
    Yin, Qianxing
    Hu, Ping
    Xu, Zhao
    Li, Hui
    Li, Hui
    Shen, Shengnan
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2024, 28 : 605 - 614
  • [22] Influence of surface roughness on laser ultrasonic detection for laser powder bed fusion manufactured 316L stainless steel
    Yin, Qianxing
    Hu, Ping
    Xu, Zhao
    Li, Hui
    Shen, Shengnan
    Journal of Materials Research and Technology, 2024, 28 : 605 - 614
  • [23] Surface heterostructuring of 316L stainless steel manufactured by laser powder bed fusion and hot isostatic pressing
    Kim, Rae Eon
    Jeong, Sang Guk
    Ha, Hyojeong
    Heo, Yoon-Uk
    Amanov, Auezhan
    Gu, Gang Hee
    Lee, Dong Jun
    Moon, Jongun
    Kim, Hyoung Seop
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2024, 909
  • [24] Effect of heat treatment on the corrosion resistance of 316L stainless steel manufactured by laser powder bed fusion
    Liu, Wei
    Liu, Chengsong
    Wang, Yong
    Zhang, Hua
    Ni, Hongwei
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2024, 32 : 3896 - 3912
  • [25] Surface heterostructuring of 316L stainless steel manufactured by laser powder bed fusion and hot isostatic pressing
    Graduate Institute of Ferrous & Energy Materials Technology, Pohang University of Science and Technology , Pohang
    37673, Korea, Republic of
    不详
    37673, Korea, Republic of
    不详
    31460, Korea, Republic of
    不详
    33720, Finland
    不详
    51508, Korea, Republic of
    不详
    31080, Korea, Republic of
    不详
    37673, Korea, Republic of
    不详
    980-8577, Japan
    不详
    03722, Korea, Republic of
    Mater. Sci. Eng. A,
  • [26] Effects of crystallographic orientation on the corrosion behavior of stainless steel 316L manufactured by laser powder bed fusion
    Trisnanto, Satria Robi
    Wang, Xianglong
    Brochu, Mathieu
    Omanovic, Sasha
    CORROSION SCIENCE, 2022, 196
  • [27] Investigation on the characteristics of porosity, melt pool in 316L stainless steel manufactured by laser powder bed fusion
    Liu, Cheng-song
    Xue, Xiao
    Wang, Yong
    Zhang, Hua
    Li, Jie
    Lu, Yuan-yuan
    Xiong, Li
    Ni, Hong-wei
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2024, 32 : 1832 - 1844
  • [28] Effect of annealing on the mechanical and corrosion properties of 316L stainless steel manufactured by laser powder bed fusion
    Ura-Binczyk, E.
    Dobkowska, A.
    Bazarnik, P.
    Ciftci, J.
    Krawczynska, A.
    Chrominski, W.
    Wejrzanowski, T.
    Molak, R.
    Sitek, R.
    Plocinski, T.
    Jaroszewicz, J.
    Mizera, J.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2022, 860
  • [29] Structural evolution during nanostructuring of additive manufactured 316L stainless steel by high-pressure torsion
    Han, Jae-Kyung
    Liu, Xiaojing
    Lee, Isshu
    Kuzminova, Yulia O.
    Evlashin, Stanislav A.
    Liss, Klaus-Dieter
    Kawasaki, Megumi
    MATERIALS LETTERS, 2021, 302
  • [30] FRACTURE TOUGHNESS TESTING OF 316L STEEL MANUFACTURED BY LASER POWDER BED FUSION
    Tan, Ee E.
    Sorce, Fabian S.
    Davies, Catrin M.
    PROCEEDINGS OF ASME 2022 PRESSURE VESSELS AND PIPING CONFERENCE, PVP2022, VOL 4A, 2022,