Non-commutative differential calculus and the axial anomaly in Abelian lattice gauge theories

被引:33
|
作者
Fujiwara, T [1 ]
Suzuki, H [1 ]
Wu, K [1 ]
机构
[1] Ibaraki Univ, Dept Mat Sci, Mito, Ibaraki 3108512, Japan
关键词
lattice gauge theory; axial anomaly; non-commutative geometry;
D O I
10.1016/S0550-3213(99)00706-3
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
The axial anomaly in lattice gauge theories has a topological nature when the Dirac operator satisfies the Ginsparg-Wilson relation. We study the axial anomaly in Abelian gauge theories on an infinite hypercubic lattice by utilizing cohomological arguments. The crucial tool in our approach is the non-commutative differential calculus (NCDC) which makes the Leibniz rule of exterior derivatives valid on the lattice. The topological nature of the "Chern character" on the lattice becomes manifest in the context of NCDC. Our result provides an algebraic proof of Luscher's theorem for a four-dimensional lattice and its generalization to arbitrary dimensions. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:643 / 660
页数:18
相关论文
共 50 条
  • [21] Divergences in non-commutative gauge theories with the Slavnov term
    Blaschke, DN
    Hohenegger, S
    Schweda, M
    JOURNAL OF HIGH ENERGY PHYSICS, 2005, (11):
  • [22] The IR/UV connection in non-commutative gauge theories
    Matusis, A
    Susskind, L
    Toumbas, N
    JOURNAL OF HIGH ENERGY PHYSICS, 2000, (12):
  • [23] On the unitarity of quantum gauge theories on non-commutative spaces
    Bassetto, A
    Vian, F
    Griguolo, L
    Nardelli, G
    JOURNAL OF HIGH ENERGY PHYSICS, 2001, (07):
  • [24] Axial anomaly in lattice abelian gauge theory in arbitrary dimensions
    Fujiwara, T
    Suzuki, H
    Wu, K
    PHYSICS LETTERS B, 1999, 463 (01) : 63 - 68
  • [25] Large-N limit of non-commutative gauge theories
    Maldacena, JM
    Russo, JG
    CLASSICAL AND QUANTUM GRAVITY, 2000, 17 (05) : 1189 - 1203
  • [26] Wilson loop and dimensional reduction in non-commutative gauge theories
    Lee, SG
    Sin, SJ
    STRING THEORY, 2002, 607 : 313 - 314
  • [27] Bootstrapping non-commutative gauge theories from L∞ algebras
    Blumenhagen, Ralph
    Brunner, Ilka
    Kupriyanov, Vladislav
    Luest, Dieter
    JOURNAL OF HIGH ENERGY PHYSICS, 2018, (05):
  • [28] Large-N limit of non-commutative gauge theories
    Maldacena, JM
    Russo, JG
    JOURNAL OF HIGH ENERGY PHYSICS, 1999, (09):
  • [29] Gauge invariant operators in field theories on non-commutative spaces
    Dorn, H
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2002, 50 (8-9): : 884 - 889
  • [30] A generalization of Slavnov-extended non-commutative gauge theories
    Blaschke, Daniel N.
    Hohenegger, Stefan
    JOURNAL OF HIGH ENERGY PHYSICS, 2007, (08):