Plasmonic-induced SERS enhancement of shell-dependent Ag@Cu2O core-shell nanoparticles

被引:60
|
作者
Chen, Lei [1 ,2 ]
Sun, Huanhuan [1 ]
Zhao, Yue [1 ]
Zhang, Yongjun [1 ]
Wang, Yaxin [1 ]
Liu, Yang [1 ]
Zhang, Xiaolong [1 ]
Jiang, Yuhong [1 ]
Hua, Zhong [1 ]
Yang, Jinghai [1 ]
机构
[1] Jilin Normal Univ, Minist Educ, Coll Phys, Key Lab Funct Mat Phys & Chem, Changchun 130103, Peoples R China
[2] Jilin Normal Univ, Key Lab Preparat & Applicat Environm Friendly Mat, Minist Educ, Coll Chem, Changchun 130103, Peoples R China
来源
RSC ADVANCES | 2017年 / 7卷 / 27期
基金
中国国家自然科学基金;
关键词
CHARGE-TRANSFER CONTRIBUTION; RAMAN-SCATTERING SERS; HETEROGENEOUS NANOSTRUCTURES; CU2O/AG COMPOSITE; SPECTROSCOPY; SILVER; GOLD; NANOCOMPOSITES; FABRICATION; CU;
D O I
10.1039/c7ra01187c
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In this study, we designed shell-dependent Ag@Cu2O core-shell nanoparticles (NPs) for SERS study. Compared to Cu2O NPs, Ag@Cu2O core-shell NPs exhibited high SERS activity because of the localized surface plasmon resonance (LSPR) from Ag core. For electron-hole pairs in Cu2O, the plasmon-induced resonant energy transfer from silver to Cu2O and the direct electron transfer can be simultaneously observed from the SERS intensity and the red-shift of the extinction spectra. Therefore, charge separation between silver and Cu2O will lead to high SERS activity. Moreover, the SERS activity of the Ag@Cu2O core-shell NPs can be modulated by changing the shell thickness, and it was found that SERS was optimal for the shell thickness of around 31 nm. The proposed enhancement mechanism can be extended to any metal-semiconductor complex system, which is contributed from plasmonic-induced SERS.
引用
收藏
页码:16553 / 16560
页数:8
相关论文
共 50 条
  • [41] Plasmonic properties and sizing of core-shell Cu-Cu2O nanoparticles fabricated by femtosecond laser ablation in liquids
    Santillan, J. M. J.
    Videla, F. A.
    Schinca, D. C.
    Scaffardi, L. B.
    PLASMONICS: METALLIC NANOSTRUCTURES AND THEIR OPTICAL PROPERTIES X, 2012, 8457
  • [42] Shell Thickness-Dependent Strain Distributions of Confined Au/Ag and Ag/Au Core-Shell Nanoparticles
    Liu, Feng
    Huang, Honghua
    Zhang, Ying
    Yu, Ting
    Yuan, Cailei
    Ye, Shuangli
    ADVANCES IN CONDENSED MATTER PHYSICS, 2015, 2015
  • [43] Hydrothermal synthesis of antibacterial silver@cuprous oxide core-shell/hydroxyapatite (Ag@Cu2O/HAp) hetero-nanohybrids
    Jeshurun A.
    Irfan M.
    Reddy B.M.
    Materials Research Innovations, 2024, 28 (04) : 263 - 277
  • [44] Ag@Pd core-shell nanoparticles
    Jose, Deepa
    Jagirdar, Balaji R.
    INDIAN JOURNAL OF CHEMISTRY SECTION A-INORGANIC BIO-INORGANIC PHYSICAL THEORETICAL & ANALYTICAL CHEMISTRY, 2011, 50 (9-10): : 1308 - 1317
  • [45] Fabrication of conductive interconnects by Ag migration in Cu-Ag core-shell nanoparticles
    Kim, Suk Jun
    Stach, Eric A.
    Handwerker, Carol A.
    APPLIED PHYSICS LETTERS, 2010, 96 (14)
  • [46] Synthesis of Ag/CuInS2 Core-Shell Nanoparticles
    Kuzuya, Toshihiro
    Kuwada, Takahiko
    Hamanaka, Yasushi
    Hirai, Shinji
    MATERIALS TRANSACTIONS, 2017, 58 (01) : 65 - 70
  • [47] Synthesis of Ag@CrO2 Core-Shell Nanoparticles
    Sharma, Preetam K.
    Sharma, Priyanka
    Biswas, S.
    Nagawat, A. K.
    PROCEEDING OF INTERNATIONAL CONFERENCE ON RECENT TRENDS IN APPLIED PHYSICS & MATERIAL SCIENCE (RAM 2013), 2013, 1536 : 85 - +
  • [48] β-Cyclodextrin coated SiO2@Au@Ag core-shell nanoparticles for SERS detection of PCBs
    Lu, Yilin
    Yao, Guohua
    Sun, Kexi
    Huang, Qing
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2015, 17 (33) : 21149 - 21157
  • [49] FRET Enhancement in Multilayer Core-Shell Nanoparticles
    Lessard-Viger, Mathieu
    Rioux, Maxime
    Rainville, Luc
    Boudreau, Denis
    NANO LETTERS, 2009, 9 (08) : 3066 - 3071
  • [50] Negative asymmetry parameter in plasmonic core-shell nanoparticles
    Varytis, Paris
    Busch, Kurt
    OPTICS EXPRESS, 2020, 28 (02): : 1714 - 1721