A class of time-fractional reaction-diffusion equation with nonlocal boundary condition

被引:72
|
作者
Zhou, Yong [1 ,2 ]
Shangerganesh, L. [3 ]
Manimaran, J. [3 ]
Debbouche, Amar [4 ]
机构
[1] Xiangtan Univ, Fac Math & Computat Sci, Xiangtan 411105, Hunan, Peoples R China
[2] King Abdulaziz Univ, Fac Sci, Nonlinear Anal & Appl Math NAAM Res Grp, Jeddah 21589, Saudi Arabia
[3] Natl Inst Technol, Dept Humanities & Sci, Farmagudi 403401, Goa, India
[4] Guelma Univ, Dept Math, Guelma 24000, Algeria
基金
中国国家自然科学基金;
关键词
Faedo-Galerkin method; fractional reaction-diffusion equation; weak solution; EXISTENCE; MODEL; PROPERTY; GROWTH;
D O I
10.1002/mma.4796
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The purpose of the study is to analyze the time-fractional reaction-diffusion equation with nonlocal boundary condition. The proposed model is used to predict the invasion of tumor and its growth. Further, we establish the existence and uniqueness of a weak solution of the proposed model using the Faedo-Galerkin method and compactness arguments.
引用
收藏
页码:2987 / 2999
页数:13
相关论文
共 50 条
  • [31] A priori estimates for weak solution for a time-fractional nonlinear reaction-diffusion equations with an integral condition
    Taki-Eddine, Oussaeif
    Abdelfatah, Bouziani
    CHAOS SOLITONS & FRACTALS, 2017, 103 : 79 - 89
  • [32] Comparison of Numerical Solutions of Time-Fractional Reaction-Diffusion Equations
    Kurulay, Muhammet
    Bayram, Mustafa
    MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES, 2012, 6 : 49 - 59
  • [33] Some inverse problems for time-fractional diffusion equation with nonlocal Samarskii-Ionkin type condition
    Ali, Muhammad
    Aziz, Sara
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (10) : 8447 - 8462
  • [34] Trajectory planning for semilinear time-fractional reaction-diffusion systems under Robin boundary conditions
    Ge, Fudong
    Meurer, Thomas
    IFAC PAPERSONLINE, 2020, 53 (02): : 7722 - 7727
  • [35] A capable numerical meshless scheme for solving distributed order time-fractional reaction-diffusion equation
    Habibirad, Ali
    Azin, Hadis
    Hesameddini, Esmail
    CHAOS SOLITONS & FRACTALS, 2023, 166
  • [36] A Fully Discrete LDG Method for the Distributed-Order Time-Fractional Reaction-Diffusion Equation
    Wei, Leilei
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2019, 42 (03) : 979 - 994
  • [37] Fractional reaction-diffusion equation
    Seki, K
    Wojcik, M
    Tachiya, M
    JOURNAL OF CHEMICAL PHYSICS, 2003, 119 (04): : 2165 - 2170
  • [38] On the existence and uniqueness of solutions to a nonlinear variable order time-fractional reaction-diffusion equation with delay
    Van Bockstal, Karel
    Zaky, Mahmoud A.
    Hendy, Ahmed S.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2022, 115
  • [39] On a fractional reaction-diffusion equation
    de Andrade, Bruno
    Viana, Arlucio
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2017, 68 (03):
  • [40] Inverse source problem for multi-term time-fractional diffusion equation with nonlocal boundary conditions
    Derbissaly, Bauyrzhan
    Sadybekov, Makhmud
    AIMS MATHEMATICS, 2024, 9 (04): : 9969 - 9988