Local Polynomial Estimation of Time-Dependent Diffusion Parameter for Discretely Observed SDE Models

被引:1
|
作者
Wang, Ji-xia [1 ]
Xiao, Qing-xian [2 ]
机构
[1] Henan Normal Univ, Coll Math & Informat Sci, Xinxiang 453007, Peoples R China
[2] Shanghai Univ Sci & Technol, Sch Business, Shanghai 200093, Peoples R China
基金
中国国家自然科学基金;
关键词
Diffusion model; Time-dependent parameter; Local polynomial estimation; Kernel weighted; Asymptotic normality; TERM STRUCTURE DYNAMICS;
D O I
10.2298/FIL1404871W
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Extending the results of Yu, Yu, Wang and Lin [10], we study the local polynomial estimation of the time-dependent diffusion parameter for time-inhomogeneous diffusion models. Considering the diffusion parameter being positive, we obtain the local polynomial estimation of the diffusion parameter by taking the diffusion parameter to be local log-polynomial fitting. The asymptotic bias, asymptotic variance and asymptotic normal distribution of the volatility function are discussed. A real data analysis is conducted to show the performance of the estimations proposed.
引用
收藏
页码:871 / 878
页数:8
相关论文
共 50 条
  • [41] Estimation of the invariant density for discretely observed diffusion processes: impact of the sampling and of the asynchronicity
    Amorino, Chiara
    Gloter, Arnaud
    STATISTICS, 2023, 57 (01) : 213 - 259
  • [42] Estimation methods for time-dependent AUC models with survival data
    Hung, Hung
    Chiang, Chin-Tsang
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2010, 38 (01): : 8 - 26
  • [43] The exact Gaussian likelihood estimation of time-dependent VARMA models
    Alj, Abdelkamel
    Jonasson, Kristjan
    Melard, Guy
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2016, 100 : 633 - 644
  • [44] Modelling and parameter estimation for discretely observed fractional iterated Ornstein-Uhlenbeck processes
    Kalemkerian, Juan
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2023, 225 : 29 - 51
  • [45] Parameter Estimation for the Discretely Observed Vasicek Model with Small Fractional Lévy Noise
    Guang Jun SHEN
    Qing Bo WANG
    Xiu Wei YIN
    Acta Mathematica Sinica, 2020, 36 (04) : 443 - 461
  • [46] Improving Microstructural Estimation in Time-Dependent Diffusion MRI With a Bayesian Method
    Liu, Kuiyuan
    Lin, Zixuan
    Zheng, Tianshu
    Ba, Ruicheng
    Zhang, Zelin
    Li, Haotian
    Zhang, Hongxi
    Tal, Assaf
    Wu, Dan
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2025, 61 (02) : 724 - 734
  • [47] Parameter Estimation for the Discretely Observed Vasicek Model with Small Fractional Lévy Noise
    Guang Jun SHEN
    Qing Bo WANG
    Xiu Wei YIN
    Acta Mathematica Sinica,English Series, 2020, 36 (04) : 443 - 461
  • [48] Parameter estimation for the discretely observed fractional Ornstein–Uhlenbeck process and the Yuima R package
    Alexandre Brouste
    Stefano M. Iacus
    Computational Statistics, 2013, 28 : 1529 - 1547
  • [49] Parameter Estimation for Discretely Observed Stochastic Differential Equations with Small Lévy Noises
    School of Mathematics and Statistics, An’yang Normal University, An’yang
    455000, China
    不详
    IAENG Int. J. Comput. Sci., 2020, 4 (1-6): : 1 - 6
  • [50] Parameter Estimation for the Discretely Observed Vasicek Model with Small Fractional Lévy Noise
    Guang Jun Shen
    Qing Bo Wang
    Xiu Wei Yin
    Acta Mathematica Sinica, English Series, 2020, 36 : 443 - 461