A Multigrid Method for Helmholtz Transmission Eigenvalue Problems

被引:65
|
作者
Ji, Xia [1 ]
Sun, Jiguang [2 ]
Xie, Hehu [1 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Inst Computat Math, LSEC,NCMIS, Beijing 100190, Peoples R China
[2] Michigan Technol Univ, Dept Math Sci, Houghton, MI 49931 USA
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
Transmission eigenvalue; Multigrid method; Finite element method; ITERATIVE METHODS;
D O I
10.1007/s10915-013-9794-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we analyze the convergence of a finite element method for the computation of transmission eigenvalues and corresponding eigenfunctions. Based on the obtained error estimate results, we propose a multigrid method to solve the Helmholtz transmission eigenvalue problem. This new method needs only linear computational work. Numerical results are provided to validate the efficiency of the proposed method.
引用
收藏
页码:276 / 294
页数:19
相关论文
共 50 条
  • [31] Mixed virtual element method for the Helmholtz transmission eigenvalue problem on polytopal meshes
    Meng, Jian
    Wang, Gang
    Mei, Liquan
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2023, 43 (03) : 1685 - 1717
  • [32] A lowest-order virtual element method for the Helmholtz transmission eigenvalue problem
    Jian Meng
    Gang Wang
    Liquan Mei
    Calcolo, 2021, 58
  • [33] An adaptive C0IPG method for the Helmholtz transmission eigenvalue problem
    Hao Li
    Yidu Yang
    Science China Mathematics, 2018, 61 : 1519 - 1542
  • [34] A lowest-order virtual element method for the Helmholtz transmission eigenvalue problem
    Meng, Jian
    Wang, Gang
    Mei, Liquan
    CALCOLO, 2021, 58 (01)
  • [35] An adaptive C~0IPG method for the Helmholtz transmission eigenvalue problem
    Hao Li
    Yidu Yang
    Science China(Mathematics), 2018, 61 (08) : 1519 - 1542
  • [36] An adaptive C 0IPG method for the Helmholtz transmission eigenvalue problem
    Li, Hao
    Yang, Yidu
    SCIENCE CHINA-MATHEMATICS, 2018, 61 (08) : 1519 - 1542
  • [37] A novel multigrid based preconditioner for heterogeneous Helmholtz problems
    Erlangga, Y
    Oosterlee, C
    Vuik, C
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2006, 27 (04): : 1471 - 1492
  • [38] A Spectral-Element Method for Transmission Eigenvalue Problems
    An, Jing
    Shen, Jie
    JOURNAL OF SCIENTIFIC COMPUTING, 2013, 57 (03) : 670 - 688
  • [39] A Spectral-Element Method for Transmission Eigenvalue Problems
    Jing An
    Jie Shen
    Journal of Scientific Computing, 2013, 57 : 670 - 688
  • [40] The method of fundamental solutions for Helmholtz eigenvalue problems in simply and multiply connected domains
    Reutskiy, SY
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2006, 30 (03) : 150 - 159