Flat Affine Symplectic Lie Groups

被引:0
|
作者
Valencia, Fabricio [1 ]
机构
[1] Univ Antioquia, Inst Matemat, Medellin 050010, Colombia
关键词
Flat affine symplectic structure; flat affine symplectic Lie group; bi-invariant symplectic connection; geodesic completeness; MANIFOLDS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a new characterization of flat affine manifolds in terms of an action of the Lie algebra of classical infinitesimal affine transformations on the bundle of linear frames. We characterize flat affine symplectic Lie groups using symplectic etale affine representations and as a consequence of this, we show that a flat affine symplectic Lie group with bi-invariant symplectic connection contains a nontrivial one parameter subgroup formed by central translations. We give two methods for constructing flat affine symplectic Lie groups, thus obtaining all those having bi-invariant symplectic connections. We get nontrivial examples of simply connected flat affine symplectic Lie groups in every even dimension.
引用
收藏
页码:63 / 92
页数:30
相关论文
共 50 条
  • [31] INVARIANT AFFINE CONNECTIONS ON LIE-GROUPS
    LAQUER, HT
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 331 (02) : 541 - 551
  • [32] Controllability of Affine Control Systems on Lie Groups
    Memet Kule
    Mediterranean Journal of Mathematics, 2016, 13 : 873 - 882
  • [33] Affine singular control systems on Lie groups
    Kule, Memet
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2015, 44 (05): : 1071 - 1077
  • [34] Controllability of Affine Control Systems on Lie Groups
    Kule, Memet
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2016, 13 (02) : 873 - 882
  • [35] Lie groups with flat Gauduchon connections
    Vezzoni, Luigi
    Yang, Bo
    Zheng, Fangyang
    MATHEMATISCHE ZEITSCHRIFT, 2019, 293 (1-2) : 597 - 608
  • [36] Affine systems on Lie groups and invariance entropy
    Da Silva, Adriano
    2016 IEEE 55TH CONFERENCE ON DECISION AND CONTROL (CDC), 2016, : 3868 - 3873
  • [37] DOUBLE AFFINE LIE ALGEBRAS AND FINITE GROUPS
    Guay, Nicolas
    Hernandez, David
    Loktev, Sergey
    PACIFIC JOURNAL OF MATHEMATICS, 2009, 243 (01) : 1 - 41
  • [38] AFFINE MULTIVECTOR FIELDS ON LIE-GROUPS
    KOSMANNSCHWARZBACH, Y
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1991, 312 (02): : 233 - 236
  • [39] Lie groups with flat Gauduchon connections
    Luigi Vezzoni
    Bo Yang
    Fangyang Zheng
    Mathematische Zeitschrift, 2019, 293 : 597 - 608
  • [40] LEVEL ONE STANDARD MODULES FOR AFFINE SYMPLECTIC LIE-ALGEBRAS
    MISRA, KC
    MATHEMATISCHE ANNALEN, 1990, 287 (02) : 287 - 302