We give a new characterization of flat affine manifolds in terms of an action of the Lie algebra of classical infinitesimal affine transformations on the bundle of linear frames. We characterize flat affine symplectic Lie groups using symplectic etale affine representations and as a consequence of this, we show that a flat affine symplectic Lie group with bi-invariant symplectic connection contains a nontrivial one parameter subgroup formed by central translations. We give two methods for constructing flat affine symplectic Lie groups, thus obtaining all those having bi-invariant symplectic connections. We get nontrivial examples of simply connected flat affine symplectic Lie groups in every even dimension.
机构:
Univ Montpellier, Inst A Grothendieck, CNRS, UMR 5149, Montpellier, France
Univ Antioquia, Antioquia, ColombiaUniv Montpellier, Inst A Grothendieck, CNRS, UMR 5149, Montpellier, France
Medina, A.
Saldarriaga, O.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Antioquia, Inst Matemat, Antioquia, ColombiaUniv Montpellier, Inst A Grothendieck, CNRS, UMR 5149, Montpellier, France
Saldarriaga, O.
Giraldo, H.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Antioquia, Inst Matemat, Antioquia, ColombiaUniv Montpellier, Inst A Grothendieck, CNRS, UMR 5149, Montpellier, France
机构:
CUNY, Queensborough C Coll, 222-05,56th Ave Bayside, New York, NY 11364 USACUNY, Queensborough C Coll, 222-05,56th Ave Bayside, New York, NY 11364 USA
Pham, D. N.
Ye, F.
论文数: 0引用数: 0
h-index: 0
机构:
CUNY, Queensborough C Coll, 222-05,56th Ave Bayside, New York, NY 11364 USACUNY, Queensborough C Coll, 222-05,56th Ave Bayside, New York, NY 11364 USA