Flat Affine Symplectic Lie Groups

被引:0
|
作者
Valencia, Fabricio [1 ]
机构
[1] Univ Antioquia, Inst Matemat, Medellin 050010, Colombia
关键词
Flat affine symplectic structure; flat affine symplectic Lie group; bi-invariant symplectic connection; geodesic completeness; MANIFOLDS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a new characterization of flat affine manifolds in terms of an action of the Lie algebra of classical infinitesimal affine transformations on the bundle of linear frames. We characterize flat affine symplectic Lie groups using symplectic etale affine representations and as a consequence of this, we show that a flat affine symplectic Lie group with bi-invariant symplectic connection contains a nontrivial one parameter subgroup formed by central translations. We give two methods for constructing flat affine symplectic Lie groups, thus obtaining all those having bi-invariant symplectic connections. We get nontrivial examples of simply connected flat affine symplectic Lie groups in every even dimension.
引用
收藏
页码:63 / 92
页数:30
相关论文
共 50 条
  • [1] Lattices in some symplectic or affine nilpotent Lie groups
    Medina, Alberto
    Revoy, Philippe
    JOURNAL OF GEOMETRY AND PHYSICS, 2014, 81 : 72 - 86
  • [2] Flat affine or projective geometries on Lie groups
    Medina, A.
    Saldarriaga, O.
    Giraldo, H.
    JOURNAL OF ALGEBRA, 2016, 455 : 183 - 208
  • [3] Flat symplectic Lie algebras
    Boucetta, Mohamed
    El Ouali, Hamza
    Lebzioui, Hicham
    COMMUNICATIONS IN ALGEBRA, 2023, 51 (10) : 4382 - 4399
  • [4] Special symplectic Lie groups and hypersymplectic Lie groups
    Ni, Xiang
    Bai, Chengming
    MANUSCRIPTA MATHEMATICA, 2010, 133 (3-4) : 373 - 408
  • [5] Special symplectic Lie groups and hypersymplectic Lie groups
    Xiang Ni
    Chengming Bai
    manuscripta mathematica, 2010, 133 : 373 - 408
  • [6] Lattices in symplectic Lie groups
    Medina, Alberto
    Revoy, Philippe
    JOURNAL OF LIE THEORY, 2007, 17 (01) : 27 - 39
  • [7] SYMPLECTIC REFLECTION ALGEBRAS AND AFFINE LIE ALGEBRAS
    Etingof, Pavel
    MOSCOW MATHEMATICAL JOURNAL, 2012, 12 (03) : 543 - 565
  • [8] On affine actions of Lie groups
    Abdelghani Zeghib
    Mathematische Zeitschrift, 1998, 227 : 245 - 262
  • [9] On affine actions of Lie groups
    Zeghib, A
    MATHEMATISCHE ZEITSCHRIFT, 1998, 227 (02) : 245 - 262
  • [10] SYMPLECTIC LIE GROUPS AND DOUBLED GEOMETRY
    Pham, D. N.
    Ye, F.
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2022, 91 (02): : 161 - 190