Vertex-connectivity, chromatic number, domination number, maximum degree and Laplacian eigenvalue distribution

被引:6
|
作者
Wang, Long [1 ]
Yan, Chunyu [1 ]
Fang, Xianwen [1 ]
Geng, Xianya [1 ]
Tian, Fenglei [2 ]
机构
[1] Anhui Univ Sci & Technol, Sch Math & Big Data, Huainan, Peoples R China
[2] Qufu Normal Univ, Sch Management, Rizhao, Peoples R China
基金
中国国家自然科学基金;
关键词
Distribution of Laplacian eigenvalue; Vertex-connectivity; Chromatic number; Domination number; Maximum degree; GRAPHS; SPECTRUM;
D O I
10.1016/j.laa.2020.08.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Gbe a connected graph of order nand m(G)(I) be the number of Laplacian eigenvalues of Gin an interval I. If I= {lambda} for a real number lambda, then m(G)(lambda) is just the multiplicity of lambda as a Laplacian eigenvalue of G. It is well known that the Laplacian eigenvalues of Gare all in the interval [0, n]. A lot of attention has been paid to the distribution of Laplacian eigenvalues in the smallest subinterval [0, 1) of length 1in [0, n]. Particularly, Hedetniemi etal. (2016) [14] proved that mG[0, 1) =.if Ghas domination number lambda. We are interested in another extreme problem: The distribution of Laplacian eigenvalues in the largest subinterval (n - 1, n] of length 1. In this article, we prove that m(G)(n -1, n] = lambda and m(G)(n-1, n] = gamma - 1, where lambda and lambda are respectively the vertex-connectivity and the chromatic number of G. Two other main results of this paper focus on mG(lambda), the multiplicity of an arbitrary Laplacian eigenvalue.of G. It is proved that m(G)(lambda) = n - m(G)(lambda) = <= Delta/Delta+ 1 and for a connected graph Gwith domination number lambda and maximum degree Delta. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页码:307 / 318
页数:12
相关论文
共 50 条
  • [41] The least eigenvalue of signless Laplacian of non-bipartite graphs with given domination number
    Fan, Yi-Zheng
    Tan, Ying-Ying
    DISCRETE MATHEMATICS, 2014, 334 : 20 - 25
  • [42] A Characterization of Graphs with Equal Domination Number and Vertex Cover Number
    Wu, Yunjian
    Yu, Qinglin
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2012, 35 (03) : 803 - 806
  • [43] CHROMATIC NUMBER AND SOME MULTIPLICATIVE VERTEX-DEGREE-BASED INDICES OF GRAPHS
    Xu, Kexiang
    Tang, Kechao
    Das, Kinkar Ch.
    Yue, Huansong
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2012, 36 (02): : 323 - 333
  • [44] Normalized Laplacian eigenvalues with chromatic number and independence number of graphs
    Sun, Shaowei
    Das, Kinkar Ch
    LINEAR & MULTILINEAR ALGEBRA, 2020, 68 (01): : 63 - 80
  • [45] A note on the total chromatic number of Halin graphs with maximum degree 4
    Zhang, ZF
    Li, LZ
    Wang, JF
    Li, HX
    APPLIED MATHEMATICS LETTERS, 1998, 11 (05) : 23 - 27
  • [46] The entire chromatic number of graphs embedded on the torus with large maximum degree
    Hu, Xiaoxue
    Wang, Ping
    Wang, Yiqiao
    Wang, Weifan
    THEORETICAL COMPUTER SCIENCE, 2017, 689 : 108 - 116
  • [47] The chromatic number of the square of a Halin graph with maximum degree five is six
    Wang, Yiqiao
    Hu, Xiaoxue
    Wang, Weifan
    ARS COMBINATORIA, 2017, 133 : 217 - 231
  • [48] THE CHROMATIC INDEX OF GRAPHS WITH LARGE MAXIMUM DEGREE, WHERE THE NUMBER OF VERTICES OF MAXIMUM DEGREE IS RELATIVELY SMALL
    CHETWYND, AG
    HILTON, AJW
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1990, 48 (01) : 45 - 66
  • [49] The b-chromatic number and f-chromatic vertex number of regular graphs
    El Sahili, Amine
    Kheddouci, Hamamache
    Kouider, Mekkia
    Mortada, Maidoun
    DISCRETE APPLIED MATHEMATICS, 2014, 179 : 79 - 85
  • [50] The b-chromatic number and f-chromatic vertex number of regular graphs
    El Sahili, Amine
    Kheddouci, Hamamache
    Kouider, Mekkia
    Mortada, Maidoun
    Discrete Applied Mathematics, 2014, 179 : 79 - 85