Vertex-connectivity, chromatic number, domination number, maximum degree and Laplacian eigenvalue distribution

被引:6
|
作者
Wang, Long [1 ]
Yan, Chunyu [1 ]
Fang, Xianwen [1 ]
Geng, Xianya [1 ]
Tian, Fenglei [2 ]
机构
[1] Anhui Univ Sci & Technol, Sch Math & Big Data, Huainan, Peoples R China
[2] Qufu Normal Univ, Sch Management, Rizhao, Peoples R China
基金
中国国家自然科学基金;
关键词
Distribution of Laplacian eigenvalue; Vertex-connectivity; Chromatic number; Domination number; Maximum degree; GRAPHS; SPECTRUM;
D O I
10.1016/j.laa.2020.08.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Gbe a connected graph of order nand m(G)(I) be the number of Laplacian eigenvalues of Gin an interval I. If I= {lambda} for a real number lambda, then m(G)(lambda) is just the multiplicity of lambda as a Laplacian eigenvalue of G. It is well known that the Laplacian eigenvalues of Gare all in the interval [0, n]. A lot of attention has been paid to the distribution of Laplacian eigenvalues in the smallest subinterval [0, 1) of length 1in [0, n]. Particularly, Hedetniemi etal. (2016) [14] proved that mG[0, 1) =.if Ghas domination number lambda. We are interested in another extreme problem: The distribution of Laplacian eigenvalues in the largest subinterval (n - 1, n] of length 1. In this article, we prove that m(G)(n -1, n] = lambda and m(G)(n-1, n] = gamma - 1, where lambda and lambda are respectively the vertex-connectivity and the chromatic number of G. Two other main results of this paper focus on mG(lambda), the multiplicity of an arbitrary Laplacian eigenvalue.of G. It is proved that m(G)(lambda) = n - m(G)(lambda) = <= Delta/Delta+ 1 and for a connected graph Gwith domination number lambda and maximum degree Delta. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页码:307 / 318
页数:12
相关论文
共 50 条
  • [1] Vertex-connectivity, chromatic number, domination number, maximum degree and Laplacian eigenvalue distribution
    Wang, Long
    Yan, Chunyu
    Fang, Xianwen
    Geng, Xianya
    Tian, Fenglei
    Linear Algebra and Its Applications, 2021, 607 : 307 - 318
  • [2] Domination number and Laplacian eigenvalue distribution
    Hedetniemi, Stephen T.
    Jacobs, David P.
    Trevisan, Vilmar
    EUROPEAN JOURNAL OF COMBINATORICS, 2016, 53 : 66 - 71
  • [3] Laplacian eigenvalue distribution, diameter and domination number of trees
    Guo, Jiaxin
    Xue, Jie
    Liu, Ruifang
    arXiv, 2022,
  • [4] Laplacian eigenvalue distribution, diameter and domination number of trees
    Guo, Jiaxin
    Xue, Jie
    Liu, Ruifang
    LINEAR & MULTILINEAR ALGEBRA, 2025, 73 (04): : 763 - 775
  • [5] Domination number and Laplacian eigenvalue of trees
    Xue, Jie
    Liu, Ruifang
    Yu, Guanglong
    Shu, Jinlong
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2020, 592 : 210 - 227
  • [6] Domination number and Laplacian eigenvalue of trees
    Xue J.
    Liu R.
    Yu G.
    Shu J.
    Linear Algebra and Its Applications, 2020, 592 : 210 - 227
  • [7] Degree distance and vertex-connectivity
    Ali, P.
    Mukwembi, S.
    Munyira, S.
    DISCRETE APPLIED MATHEMATICS, 2013, 161 (18) : 2802 - 2811
  • [8] FRACTIONAL CHROMATIC NUMBER, MAXIMUM DEGREE, AND GIRTH
    Pirot, Francois
    Sereni, Jean-Sebastien
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2021, 35 (04) : 2815 - 2843
  • [9] On the maximum average degree and the incidence chromatic number
    Wang, Shudong
    Yan, Lijun
    Liu, Xiangrong
    Beijing Daxue Xuebao (Ziran Kexue Ban)/Acta Scientiarum Naturalium Universitatis Pekinensis, 2008, 44 (05): : 727 - 732
  • [10] On lower bounds for the chromatic number in terms of vertex degree
    Zaker, Manouchehr
    DISCRETE MATHEMATICS, 2011, 311 (14) : 1365 - 1370