Cavity ring-down spectroscopy on a high power rf driven source for negative hydrogen ions

被引:59
|
作者
Berger, M. [1 ]
Fantz, U. [1 ]
Christ-Koch, S. [1 ]
机构
[1] Max Planck Inst Plasma Phys, EURATOM Assoc, D-85748 Garching, Germany
来源
PLASMA SOURCES SCIENCE & TECHNOLOGY | 2009年 / 18卷 / 02期
关键词
H IONS; ABSORPTION; PLASMA; EXTRACTION; DENSITIES;
D O I
10.1088/0963-0252/18/2/025004
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Cavity ring-down spectroscopy (CRDS) is a very sensitive diagnostic technique for absorption measurements. It is capable of measuring the absolute line-of-sight (LOS) integrated density of negative hydrogen ions (H-, D-) which induce a weak absorption (a similar or equal to 10(-6) cm(-1)) along a LOS in plasmas containing negative hydrogen ions. CRDS has been applied to a high power rf driven negative ion source which is now the reference source for the ITER neutral beam injection system. The rf source operates at low pressure (typically 0.3 Pa). Negative hydrogen ions are produced mainly by the conversion of hydrogen particles at a caesium coated surface achieving negative ion densities comparable to the electron density near the surface. It is shown that CRDS very reliably measures the absolute volume density of negative hydrogen ions in these sources. The densities range from 10(16) m(-3) in volume operation to 10(17) m(-3) in caesium seeded operation. The measured volume density close to the extraction system and the extracted current density change consistently while varying different source parameters, such as the total pressure or the input power applied to the source. Results are shown for measurements in hydrogen and deuterium discharges with caesium seeding. An additional absorption is measured in the afterglow of the discharge and is attributed to the caesium dimer Cs-2.
引用
收藏
页数:8
相关论文
共 50 条
  • [42] Pulse-stacked cavity ring-down spectroscopy
    Crosson, ER
    Haar, P
    Marcus, GA
    Schwettman, HA
    Paldus, BA
    Spence, TG
    Zare, RN
    REVIEW OF SCIENTIFIC INSTRUMENTS, 1999, 70 (01): : 4 - 10
  • [43] Cavity ring-down spectroscopy as a detector for liquid chromatography
    Snyder, KL
    Zare, RN
    ANALYTICAL CHEMISTRY, 2003, 75 (13) : 3086 - 3091
  • [44] Dual-comb cavity ring-down spectroscopy
    Lisak, Daniel
    Charczun, Dominik
    Nishiyama, Akiko
    Voumard, Thibault
    Wildi, Thibault
    Kowzan, Grzegorz
    Brasch, Victor
    Herr, Tobias
    Fleisher, Adam J.
    Hodges, Joseph T.
    Ciurylo, Roman
    Cygan, Agata
    Maslowski, Piotr
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [45] Frequency-stabilized cavity ring-down spectroscopy
    Long, D. A.
    Cygan, A.
    van Zee, R. D.
    Okumura, M.
    Miller, C. E.
    Lisak, D.
    Hodges, J. T.
    CHEMICAL PHYSICS LETTERS, 2012, 536 : 1 - 8
  • [46] Coupled-cavity ring-down spectroscopy technique
    Courtois, Jeremie
    Hodges, Joseph T.
    OPTICS LETTERS, 2012, 37 (16) : 3354 - 3356
  • [47] Cavity ring-down spectroscopy of low concentration gases
    不详
    JOURNAL OF RESEARCH OF THE NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY, 1996, 101 (03): : 406 - 407
  • [48] Dual-comb cavity ring-down spectroscopy
    Daniel Lisak
    Dominik Charczun
    Akiko Nishiyama
    Thibault Voumard
    Thibault Wildi
    Grzegorz Kowzan
    Victor Brasch
    Tobias Herr
    Adam J. Fleisher
    Joseph T. Hodges
    Roman Ciuryło
    Agata Cygan
    Piotr Masłowski
    Scientific Reports, 12
  • [49] METHYL RADICAL MEASUREMENT BY CAVITY RING-DOWN SPECTROSCOPY
    ZALICKI, P
    MA, Y
    ZARE, RN
    WAHL, EH
    DADAMIO, JR
    OWANO, TG
    KRUGER, CH
    CHEMICAL PHYSICS LETTERS, 1995, 234 (4-6) : 269 - 274
  • [50] Cavity ring-down spectroscopy of metallic gold nanoparticles
    Gilb, S.
    Hartl, K.
    Kartouzian, A.
    Peter, J.
    Heiz, U.
    Boyen, H. G.
    Ziemann, P.
    EUROPEAN PHYSICAL JOURNAL D, 2007, 45 (03): : 501 - 506