Legendre-Gauss-type spectral collocation algorithms for nonlinear ordinary/partial differential equations

被引:11
|
作者
Yi, Lijun [1 ,2 ]
Wang, Zhongqing [1 ,2 ]
机构
[1] Shanghai Normal Univ, Dept Math, Shanghai 200234, Peoples R China
[2] Shanghai Univ E Inst, Div Computat Sci, Shanghai 200234, Peoples R China
基金
高等学校博士学科点专项科研基金;
关键词
spectral collocation method; time-dependent nonlinear partial differential equations; ordinary differential equations; discretization in time and space; high-order accuracy; INITIAL-VALUE PROBLEMS; PRIORI ERROR ANALYSIS; HP-VERSION; TIME; ACCURACY;
D O I
10.1080/00207160.2013.841901
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose new Legendre-Gauss collocation algorithms for ordinary differential equations. We also design Legendre-Gauss-type collocation algorithms for time-dependent nonlinear partial differential equations. The suggested algorithms enjoy spectral accuracy in both time and space, and can be implemented in a fast and stable manner. Numerical results exhibit the effectiveness.
引用
收藏
页码:1434 / 1460
页数:27
相关论文
共 50 条
  • [31] SUPERCONVERGENCE OF LEGENDRE-GAUSS-LOBATTO INTERPOLATION AND SPECTRAL COLLOCATION
    Tian, Yan
    Kong, Desong
    Zhang, Zhimin
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2023, 28 (08): : 4578 - 4597
  • [32] An Algorithm for Systems of Nonlinear Ordinary Differential Equations Based on Legendre Wavelets
    Biazar, Jafar
    Goldoust, Fereshteh
    PUNJAB UNIVERSITY JOURNAL OF MATHEMATICS, 2019, 51 (06): : 65 - 80
  • [33] Legendre-tau-Galerkin and spectral collocation method for nonlinear evolution equations
    Qin, Yonghui
    Ma, Heping
    APPLIED NUMERICAL MATHEMATICS, 2020, 153 : 52 - 65
  • [34] LEGENDRE-PETROV-GALERKIN CHEBYSHEV SPECTRAL COLLOCATION METHOD FOR SECOND-ORDER NONLINEAR DIFFERENTIAL EQUATIONS
    Gao, Qiyi
    Wu, Hua
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2023, 28 (03): : 2246 - 2268
  • [35] Legendre spectral collocation method for solving nonlinear fractional Fredholm integro-differential equations with convergence analysis
    Tedjani, A. H.
    Amin, A. Z.
    Abdel-Aty, Abdel-Haleem
    Abdelkawy, M. A.
    Mahmoud, Mona
    AIMS MATHEMATICS, 2024, 9 (04): : 7973 - 8000
  • [36] Legendre Spectral Collocation Methods for Volterra Delay-Integro-Differential Equations
    Jingjun Zhao
    Yang Cao
    Yang Xu
    Journal of Scientific Computing, 2016, 67 : 1110 - 1133
  • [37] A Legendre-Gauss collocation method for neutral functional-differential equations with proportional delays
    Bhrawy, Ali H.
    Assas, Laila M.
    Tohidi, Emran
    Alghamdi, Mohammed A.
    ADVANCES IN DIFFERENCE EQUATIONS, 2013,
  • [38] A Legendre-Gauss collocation method for neutral functional-differential equations with proportional delays
    Ali H Bhrawy
    Laila M Assas
    Emran Tohidi
    Mohammed A Alghamdi
    Advances in Difference Equations, 2013
  • [39] A Multiple Interval Chebyshev-Gauss-Lobatto Collocation Method for Ordinary Differential Equations
    Wang, Zhong-qing
    Mu, Jun
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2016, 9 (04) : 619 - 639
  • [40] Legendre Wavelet Collocation Solution for System of Linear and Nonlinear Delay Differential Equations
    Kumar D.
    Upadhyay S.
    Singh S.
    Rai K.N.
    International Journal of Applied and Computational Mathematics, 2017, 3 (Suppl 1) : 295 - 310