Stabilizing two-dimensional quantum scars by deformation and synchronization

被引:27
|
作者
Michailidis, A. A. [1 ]
Turner, C. J. [2 ]
Papic, Z. [2 ]
Abanin, D. A. [3 ]
Serbyn, M. [1 ]
机构
[1] IST Austria, Campus 1, A-3400 Klostemeuburg, Austria
[2] Univ Leeds, Sch Phys & Astron, Leeds LS2 9JT, W Yorkshire, England
[3] Univ Geneva, Dept Theoret Phys, 24 Quai Ernest Ansennet, CH-1211 Geneva, Switzerland
来源
PHYSICAL REVIEW RESEARCH | 2020年 / 2卷 / 02期
基金
英国工程与自然科学研究理事会; 欧洲研究理事会; 瑞士国家科学基金会; 美国国家科学基金会;
关键词
STATISTICAL-MECHANICS; CHAOS;
D O I
10.1103/PhysRevResearch.2.022065
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Relaxation to a thermal state is the inevitable fate of nonequilibrium interacting quantum systems without special conservation laws. While thermalization in one-dimensional systems can often be suppressed by integrability mechanisms, in two spatial dimensions thermalization is expected to be far more effective due to the increased phase space. In this work we propose a general framework for escaping or delaying the emergence of the thermal state in two-dimensional arrays of Rydberg atoms via the mechanism of quantum scars, i.e., initial states that fail to thermalize. The suppression of thermalization is achieved in two complementary ways: by adding local perturbations or by adjusting the driving Rabi frequency according to the local connectivity of the lattice. We demonstrate that these mechanisms allow us to realize robust quantum scars in various two-dimensional lattices, including decorated lattices with nonconstant connectivity. In particular, we show that a small decrease of the Rabi frequency at the corners of the lattice is crucial for mitigating the strong boundary effects in two-dimensional systems. Our results identify synchronization as an important tool for future experiments on two-dimensional quantum scars.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Quantum metallicity in a two-dimensional insulator
    V. Yu. Butko
    P. W. Adams
    Nature, 2001, 409 : 161 - 164
  • [22] Two-dimensional vortex quantum droplets
    Li, Yongyao
    Chen, Zhaopin
    Luo, Zhihuan
    Huang, Chunqing
    Tan, Haishu
    Pang, Wei
    Malomed, Boris A.
    PHYSICAL REVIEW A, 2018, 98 (06)
  • [23] Two-dimensional Quantum Random Walk
    Yuliy Baryshnikov
    Wil Brady
    Andrew Bressler
    Robin Pemantle
    Journal of Statistical Physics, 2011, 142 : 78 - 107
  • [24] QUASIPARTICLES IN TWO-DIMENSIONAL QUANTUM CRYSTALS
    VARDANIAN, GA
    SAAKIAN, AS
    ZHURNAL EKSPERIMENTALNOI I TEORETICHESKOI FIZIKI, 1985, 88 (03): : 1079 - 1088
  • [25] The two-dimensional quantum Galilei Groups
    Kowalczyk, E
    ACTA PHYSICA POLONICA B, 2000, 31 (08): : 1627 - 1638
  • [26] Magnetization of two-dimensional quantum rings
    Aichinger, M.
    Chin, S. A.
    Krotscheck, E.
    Raesaenen, E.
    LOW TEMPERATURE PHYSICS, PTS A AND B, 2006, 850 : 1401 - +
  • [27] Quantum percolation in two-dimensional antiferromagnets
    Yu, R
    Roscilde, T
    Haas, S
    PHYSICAL REVIEW LETTERS, 2005, 94 (19)
  • [28] Quantum lifetime of two-dimensional holes
    Eisenstein, J. P.
    Syphers, D.
    Pfeiffer, L. N.
    West, K. W.
    SOLID STATE COMMUNICATIONS, 2007, 143 (8-9) : 365 - 368
  • [29] Quantum Paraelastic Two-Dimensional Materials
    Bishop, Tyler B.
    Farmer, Erin E.
    Sharmin, Afsana
    Pacheco-Sanjuan, Alejandro
    Darancet, Pierre
    Barraza-Lopez, Salvador
    PHYSICAL REVIEW LETTERS, 2019, 122 (01)
  • [30] Quantum Nanophotonics in Two-Dimensional Materials
    Reserbat-Plantey, Antoine
    Epstein, Itai
    Torre, Iacopo
    Costa, Antonio T.
    Goncalves, P. A. D.
    Mortensen, N. Asger
    Polini, Marco
    Song, Justin C. W.
    Peres, Nuno M. R.
    Koppens, Frank H. L.
    ACS PHOTONICS, 2021, 8 (01): : 85 - 101