On Deciding Admissibility in Abstract Argumentation Frameworks

被引:0
|
作者
Nofal, Samer [1 ]
Atkinson, Katie [2 ]
Dunne, Paul E. [2 ]
机构
[1] German Jordanian Univ, Dept Comp Sci, Amman, Jordan
[2] Univ Liverpool, Dept Comp Sci, Liverpool, Merseyside, England
关键词
Argument-based Knowledge Base; Argument-based Reasoning; Computational Argumentation; Algorithms; DECISION-PROBLEMS; ALGORITHMS; SYSTEMS; INCONSISTENCY;
D O I
10.5220/0008064300670075
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In the context of abstract argumentation frameworks, the admissibility problem is about deciding whether a given argument (i.e. piece of knowledge) is admissible in a conflicting knowledge base. In this paper we present an enhanced backtracking-based algorithm for solving the admissibility problem. The algorithm performs successfully when applied to a wide range of benchmark abstract argumentation frameworks and when compared to the state-of-the-art algorithm.
引用
收藏
页码:67 / 75
页数:9
相关论文
共 50 条
  • [31] Abstract solvers for Dung's argumentation frameworks
    Brochenin, Remi
    Linsbichler, Thomas
    Maratea, Marco
    Wallner, Johannes P.
    Woltran, Stefan
    ARGUMENT & COMPUTATION, 2018, 9 (01) : 41 - 72
  • [32] On the Complexity of Enumerating the Extensions of Abstract Argumentation Frameworks
    Kroell, Markus
    Pichler, Reinhard
    Woltran, Stefan
    PROCEEDINGS OF THE TWENTY-SIXTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2017, : 1145 - 1152
  • [33] Collective argumentation with topological restrictions: the case of aggregating abstract argumentation frameworks
    Chen, Weiwei
    JOURNAL OF LOGIC AND COMPUTATION, 2023, 33 (02) : 319 - 343
  • [34] Shedding new light on the foundations of abstract argumentation: Modularization and weak admissibility
    Baumann, Ringo
    Brewka, Gerhard
    Ulbricht, Markus
    ARTIFICIAL INTELLIGENCE, 2022, 310
  • [35] Recursion in Abstract Argumentation is Hard - On the Complexity of Semantics Based on Weak Admissibility
    Dvorak, Wolfgang
    Ulbricht, Markus
    Woltran, Stefan
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 6288 - 6295
  • [36] Recursion in Abstract Argumentation is Hard - On the Complexity of Semantics Based on Weak Admissibility
    Dvorak, Wolfgang
    Ulbricht, Markus
    Woltran, Stefan
    JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 2022, 74 : 1403 - 1447
  • [37] Recursion in Abstract Argumentation is Hard — On the Complexity of Semantics Based on Weak Admissibility
    Dvořák W.
    Ulbricht M.
    Woltran S.
    Journal of Artificial Intelligence Research, 2022, 74 : 1403 - 1447
  • [38] Preservation of semantic properties in collective argumentation: The case of aggregating abstract argumentation frameworks
    Chen, Weiwei
    Endriss, Ulle
    ARTIFICIAL INTELLIGENCE, 2019, 269 : 27 - 48
  • [39] On Scaling the Enumeration of the Preferred Extensions of Abstract Argumentation Frameworks
    Alfano, Gianvincenzo
    Greco, Sergio
    Parisi, Francesco
    SAC '19: PROCEEDINGS OF THE 34TH ACM/SIGAPP SYMPOSIUM ON APPLIED COMPUTING, 2019, : 1147 - 1153
  • [40] Probabilistic Bipolar Abstract Argumentation Frameworks: Complexity Results
    Fazzinga, Bettina
    Flesca, Sergio
    Furfaro, Filippo
    PROCEEDINGS OF THE TWENTY-SEVENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2018, : 1803 - 1809