Rotated DFT-s-OFDM for transmitting PAPR-minimised BPSK symbols

被引:0
|
作者
Cho, L. [1 ]
Huang, W. [1 ]
Hsu, C. -Y. [2 ]
机构
[1] Tatung Univ, Ctr Wireless Broadband Technol, Taipei 10452, Taiwan
[2] Tatung Univ, Dept Elect Engn, Taipei 10452, Taiwan
关键词
phase shift keying; computational complexity; discrete Fourier transforms; OFDM modulation; radio links; 3G mobile communication; data phase; DFT spacing; rotated DFT-s-OFDM; PAPR-minimised BPSK symbols; third generation partnership project; peak-to-average power ratio uplink transmission; rotation angle; optimal PAPR performance; PAPR reduction; allocated subcarriers; discrete-Fourier-transform-spread orthogonal frequency division multiplexing; noise figure 0; 2; dB;
D O I
10.1049/el.2020.2214
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The third generation partnership project has recommended pi/2-binary phase-shift keying (BPSK) in discrete-Fourier-transform-spread orthogonal frequency division multiplexing (DFT-s-OFDM) for low peak-to-average power ratio (PAPR) uplink transmission. Recently, the rotation angle of 7 pi/6 for rotated BPSK has been proposed by J. Kim et al. to achieve optimal PAPR performance. However, the authors discovered that this angle might negate the contribution to PAPR reduction in most number of allocated subcarriers owing to the discrete-Fourier-transform (DFT) boundary-matching problem. To solve this issue, they propose a novel scheme to fine-tune the rotation angle to approximately 7 pi/6 in a manner compatible with the long-term evolution/new radio specification, while ensuring that the data phase matches the periodicity. Simulations show that the proposed scheme can stably improve the PAPR by similar to 0.2 dB compared to pi/2-BPSK for any DFT spacing, thereby benefiting user equipment by providing better power efficiency and wider signal coverage without additional computational complexity.
引用
收藏
页码:1350 / 1352
页数:3
相关论文
共 50 条
  • [41] Physical Layer Double Key Matrix Encryption for DFT-S-OFDM Transmission Mode
    Gao B.-J.
    Huang S.-Y.
    Jing L.
    Hu Y.
    Jisuanji Xuebao/Chinese Journal of Computers, 2018, 41 (02): : 368 - 381
  • [42] Widely-Linear Nyquist Criteria for DFT-Spread OFDM of Constellation-Rotated PAM Symbols
    Choi, Jeonghoon
    Kim, Jubum
    Cho, Joon Ho
    Lehnert, James S.
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2021, 69 (05) : 2909 - 2922
  • [43] 基于DFT-S-OFDM的网络信息安全加密传输仿真
    马艳娥
    李瑞金
    计算机仿真, 2022, 39 (01) : 358 - 361+393
  • [44] PAPER Unified 6G Waveform Design Based on DFT-s-OFDM Enhancements
    Liu, Juan
    Hou, Xiaolin
    Liu, Wenjia
    Chen, Lan
    Kishiyama, Yoshihisa
    Asai, Takahiro
    IEICE TRANSACTIONS ON COMMUNICATIONS, 2023, E106B (06) : 528 - 537
  • [45] DFT-s-OFDM: Enabling Flexibility in Frequency Selectivity and Multiuser Diversity for 5G
    Chen, Xiaojing
    Ni, Wei
    Zhu, Yu
    Xu, Shugong
    Cui, Jianming
    Wang, Xin
    Zhang, Jinlin
    IEEE CONSUMER ELECTRONICS MAGAZINE, 2020, 9 (06) : 15 - 22
  • [46] All-optical generation of DFT-S-OFDM superchannels using periodic sinc pulses
    Lowery, Arthur James
    Zhu, Chen
    Viterbo, Emanuele
    Corcoran, Bill
    OPTICS EXPRESS, 2014, 22 (22): : 27026 - 27041
  • [47] Bit Error Rate Performance of DFT-S-OFDM Systems Under Alpha-Stable Noise
    Li, Ruizhi
    Li, Guo
    Zhang, Peixin
    Gong, Fengkui
    IEEE COMMUNICATIONS LETTERS, 2025, 29 (03) : 645 - 649
  • [48] 一种新的DFT-S-OFDM软判决检测算法
    倪俊
    杨涛
    胡波
    信息与电子工程, 2009, 7 (06) : 559 - 565
  • [49] Pilot-Based Phase Noise Tracking for Uplink DFT-s-OFDM in 5G
    Sibel, Jean-Christophe
    2018 25TH INTERNATIONAL CONFERENCE ON TELECOMMUNICATIONS (ICT), 2018, : 52 - 56
  • [50] iDeepRx enabled 100 Gb/s DFT-s-OFDM data transmission over 220 GHz testbed
    Qi, Wenliang
    Ye, Chenhui
    Korpi, Dani Johannes
    Gong, Chaohua
    Jin, Yingni
    Yang, Tao
    ICC 2023-IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, 2023, : 3684 - 3689