MODULAR OPERADS AS MODULES OVER THE BRAUER PROPERAD

被引:0
|
作者
Stoll, Robin [1 ]
机构
[1] Stockholm Univ, Dept Math, S-10691 Stockholm, Sweden
来源
关键词
Modular operads; properads; Koszul duality; KOSZUL DUALITY; HOMOLOGY; SPACES;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that modular operads are equivalent to modules over a certain simple properad which we call the Brauer properad. Furthermore, we show that, in this setting, the Feynman transform corresponds to the cobar construction for modules of this kind. To make this precise, we extend the machinery of the bar and cobar constructions relative to a twisting morphism to modules over a general properad. This generalizes the classical case of algebras over an operad and might be of independent interest. As an application, we sketch a Koszul duality theory for modular operads.
引用
收藏
页码:1538 / 1607
页数:70
相关论文
共 50 条