We show that modular operads are equivalent to modules over a certain simple properad which we call the Brauer properad. Furthermore, we show that, in this setting, the Feynman transform corresponds to the cobar construction for modules of this kind. To make this precise, we extend the machinery of the bar and cobar constructions relative to a twisting morphism to modules over a general properad. This generalizes the classical case of algebras over an operad and might be of independent interest. As an application, we sketch a Koszul duality theory for modular operads.
机构:
Univ Missouri, Dept Math, Columbia, MO 65211 USAUniv Missouri, Dept Math, Columbia, MO 65211 USA
Celikbas, Olgur
Gheibi, Mohsen
论文数: 0引用数: 0
h-index: 0
机构:
Tarbiat Moallem Univ, Fac Math Sci & Comp, Tehran, Iran
Inst Res Fundamental Sci IPM, Sch Math, Tehran, IranUniv Missouri, Dept Math, Columbia, MO 65211 USA
Gheibi, Mohsen
Takahashi, Ryo
论文数: 0引用数: 0
h-index: 0
机构:
Nagoya Univ, Grad Sch Math, Chikusa Ku, Nagoya, Aichi 4648602, Japan
Univ Nebraska, Dept Math, Lincoln, NE 68588 USAUniv Missouri, Dept Math, Columbia, MO 65211 USA
机构:
Umm Alqura Univ, Fac Appl Sci, Dept Math Sci, POB 14035, Mecca 21955, Saudi ArabiaUmm Alqura Univ, Fac Appl Sci, Dept Math Sci, POB 14035, Mecca 21955, Saudi Arabia
Katib, Hedaih Tariq
JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS,
2020,
48
(01):
: 1
-
17