Image tag refinement by regularized latent Dirichlet allocation

被引:21
|
作者
Wang, Jingdong [1 ]
Zhou, Jiazhen [2 ]
Xu, Hao [3 ]
Mei, Tao [1 ]
Hua, Xian-Sheng [4 ]
Li, Shipeng [1 ]
机构
[1] Microsoft Res, Beijing, Peoples R China
[2] Columbia Univ, New York, NY USA
[3] Univ Sci & Technol China, Hefei 230026, Peoples R China
[4] Microsoft Res, Redmond, WA USA
关键词
Image tag refinement; Visual affinity; Regularized latent Dirichlet allocation;
D O I
10.1016/j.cviu.2014.02.011
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Tagging is nowadays the most prevalent and practical way to make images searchable. However, in reality many manually-assigned tags are irrelevant to image content and hence are not reliable for applications. A lot of recent efforts have been conducted to refine image tags. In this paper, we propose to do tag refinement from the angle of topic modeling and present a novel graphical model, regularized latent Dirichlet allocation (rLDA). In the proposed approach, tag similarity and tag relevance are jointly estimated in an iterative manner, so that they can benefit from each other, and the multi-wise relationships among tags are explored. Moreover, both the statistics of tags and visual affinities of images in the corpus are explored to help topic modeling. We also analyze the superiority of our approach from the deep structure perspective. The experiments on tag ranking and image retrieval demonstrate the advantages of the proposed method. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:61 / 70
页数:10
相关论文
共 50 条
  • [21] Sequential latent Dirichlet allocation
    Lan Du
    Wray Buntine
    Huidong Jin
    Changyou Chen
    Knowledge and Information Systems, 2012, 31 : 475 - 503
  • [22] Document Image OCR Accuracy Prediction via Latent Dirichlet Allocation
    Peng, Xujun
    Cao, Huaigu
    Natarajan, Prem
    2015 13TH IAPR INTERNATIONAL CONFERENCE ON DOCUMENT ANALYSIS AND RECOGNITION (ICDAR), 2015, : 771 - 775
  • [23] Max-Margin Latent Dirichlet Allocation for Image Classification and Annotation
    Wang, Yang
    Mori, Greg
    PROCEEDINGS OF THE BRITISH MACHINE VISION CONFERENCE 2011, 2011,
  • [24] An Approach for Multimodal Medical Image Retrieval using Latent Dirichlet Allocation
    Vikram, Mandikal
    Anantharaman, Aditya
    Suhas, B. S.
    Kamath, Sowmya S.
    PROCEEDINGS OF THE 6TH ACM IKDD CODS AND 24TH COMAD, 2019, : 44 - 51
  • [25] Blind Image Quality Assessment Using Latent Dirichlet Allocation Model
    Luo, Wang
    Zhang, Tianbing
    MECHANICAL ENGINEERING, MATERIALS AND ENERGY III, 2014, 483 : 594 - 598
  • [26] Distributed Latent Dirichlet Allocation on Streams
    Guo, Yunyan
    Li, Jianzhong
    ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2022, 16 (01)
  • [27] Parallel Latent Dirichlet Allocation on GPUs
    Moon, Gordon E.
    Nisa, Israt
    Sukumaran-Rajam, Aravind
    Bandyopadhyay, Bortik
    Parthasarathy, Srinivasan
    Sadayappan, P.
    COMPUTATIONAL SCIENCE - ICCS 2018, PT II, 2018, 10861 : 259 - 272
  • [28] Selecting Priors for Latent Dirichlet Allocation
    Syed, Shaheen
    Spruit, Marco
    2018 IEEE 12TH INTERNATIONAL CONFERENCE ON SEMANTIC COMPUTING (ICSC), 2018, : 194 - 202
  • [29] Crowd labeling latent Dirichlet allocation
    Luca Pion-Tonachini
    Scott Makeig
    Ken Kreutz-Delgado
    Knowledge and Information Systems, 2017, 53 : 749 - 765
  • [30] Latent IBP Compound Dirichlet Allocation
    Archambeau, Cedric
    Lakshminarayanan, Balaji
    Bouchard, Guillaume
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2015, 37 (02) : 321 - 333