Saturated fuzzy syntopogenous spaces

被引:0
|
作者
Chung, SH
机构
关键词
fuzzy topological space; fuzzy neighborhood space; fuzzy proximity; fuzzy uniform space; fuzzy topogenous order; saturated fuzzy proximity; saturated fuzzy topogenous order; compatible map with fuzzy semi-topogenous order;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we introduce the notion of saturated fuzzy topogenous orders and using this order, we introduce the notion of saturated fuzzy syntopogenous spaces and we prove basic properties of this space. We show that the category [FSyn] of saturated fuzzy syntopogenous spaces and continuous maps is coreflective in the category KFSyn of fuzzy syntopogenous spaces (in the sense of Katsaras) and continuous maps. Moreover, we show that (1) [bFSyn] and QFUnif are isomorphic. (2) [sbFSyn] and FUnif are isomorphic. (3) [ptFSyn] and FTop are isomorphic. (4) [tFSyn] and [FProx] are isomorphic. (5) [tFSyn] is coreflective in tKFSyn. (6) [FProx] is coreflective in FProx. (7) [ptFSyn] is coreflective in ptKFSyn.
引用
收藏
页码:107 / 119
页数:13
相关论文
共 50 条
  • [41] A SYNTOPOGENOUS CHARACTERIZATION OF A TOPOLOGICAL GROUP
    GREEN, MD
    BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES MATHEMATIQUES ASTRONOMIQUES ET PHYSIQUES, 1968, 16 (06): : 457 - &
  • [42] BETH THEOREM FOR SYNTOPOGENOUS STRUCTURES
    LEISS, H
    JOURNAL OF SYMBOLIC LOGIC, 1985, 50 (01) : 268 - 268
  • [43] On the Level Spaces of Fuzzy Topological Spaces
    Benchalli, S. S.
    Siddapur, G. P.
    BULLETIN OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 1 (02): : 57 - 65
  • [44] On level spaces of fuzzy bitopological spaces
    M. Kameswari
    S. A. Mohiuddine
    V. Lakshmana Gomathi Nayagam
    K. Tamilvanan
    N. Anbazhagan
    Soft Computing, 2022, 26 : 11287 - 11293
  • [45] On level spaces of fuzzy bitopological spaces
    Kameswari, M.
    Mohiuddine, S. A.
    Nayagam, V. Lakshmana Gomathi
    Tamilvanan, K.
    Anbazhagan, N.
    SOFT COMPUTING, 2022, 26 (21) : 11287 - 11293
  • [46] The fuzzy topological spaces on a fuzzy space
    Dib, KA
    FUZZY SETS AND SYSTEMS, 1999, 108 (01) : 103 - 110
  • [47] Smooth fuzzy topology on fuzzy spaces
    Dib, KA
    Alghamdi, M
    Alhmadi, A
    PROCEEDINGS OF THE FIFTH JOINT CONFERENCE ON INFORMATION SCIENCES, VOLS 1 AND 2, 2000, : 88 - 90
  • [48] Fuzzy objects in spaces with fuzzy partitions
    Jiří Močkoř
    Michal Holčapek
    Soft Computing, 2017, 21 : 7269 - 7284
  • [49] Spaces with fuzzy partitions and fuzzy transform
    Mockor, Jiri
    SOFT COMPUTING, 2017, 21 (13) : 3479 - 3492
  • [50] Spaces with fuzzy partitions and fuzzy transform
    Jiří Močkoř
    Soft Computing, 2017, 21 : 3479 - 3492