Impact of Maxwell rigidity transitions on resistance drift phenomena in GexTe1-x glasses

被引:23
|
作者
Luckas, J. [1 ,2 ,3 ]
Olk, A. [1 ,2 ,3 ]
Jost, P. [1 ]
Volker, H. [1 ]
Alvarez, J. [2 ,3 ]
Jaffre, A. [2 ,3 ]
Zalden, P. [1 ]
Piarristeguy, A. [4 ]
Pradel, A. [4 ]
Longeaud, C. [2 ,3 ]
Wuttig, M. [1 ,5 ]
机构
[1] Rhein Westfal TH Aachen, Inst Phys 1, D-52056 Aachen, Germany
[2] Univ Paris 06, Supelec, Lab Genie Elect Paris, CNRS UMR 8507, F-91190 Gif Sur Yvette, France
[3] Univ Paris 11, F-91190 Gif Sur Yvette, France
[4] Univ Montpellier 2, Inst Charles Gerhardt Montpellier, UMR CNRS 5253, F-34095 Montpellier 5, France
[5] Rhein Westfal TH Aachen, JARA Fundamentals Future Informat Technol, Aachen, Germany
关键词
PHASE-CHANGE MATERIALS; CHALCOGENIDE GLASSES; DATA-STORAGE; THRESHOLD; NETWORKS;
D O I
10.1063/1.4893743
中图分类号
O59 [应用物理学];
学科分类号
摘要
Amorphous chalcogenides usually exhibit a resistivity, which increases with age following a power law rho similar to t(alpha). Existing theories link this change in amorphous state resistivity to structural relaxation. Here, the impact of fundamental glass properties on resistance drift phenomena in amorphous GexTe1-x networks is studied. Employing Raman spectroscopy, the Maxwell rigidity transition from flexible to stressed rigid is determined to occur in the compositional range 0.250<x(c)<0.265. Stressed rigid glasses (x>0.265) exhibit rather strong resistance drift, where the drift parameters increase steadily from alpha=0.13 for amorphous GeTe to alpha=0.29 for compositions near the stiffness threshold x(c). On the other hand, the drift parameter in flexible glasses (x<0.25) decreases with decreasing Ge content x to values as low as alpha=0.05. These findings illustrate the strong impact of the stiffness threshold on resistance drift phenomena in chalcogenides. (C) 2014 AIP Publishing LLC.
引用
收藏
页数:4
相关论文
共 45 条
  • [1] PHOTOACOUSTIC CHARACTERIZATION OF CHALCOGENIDE GLASSES - THERMAL-DIFFUSIVITY OF GEXTE1-X
    DELIMA, JC
    CELLA, N
    MIRANDA, LCM
    AN, CC
    FRANZAN, AH
    LEITE, NF
    PHYSICAL REVIEW B, 1992, 46 (21) : 14186 - 14189
  • [2] Amorphous-Crystal Phase Transitions in GexTe1-x Alloys
    Carria, E.
    Mio, A. M.
    Gibilisco, S.
    Miritello, M.
    Bongiorno, C.
    Grimaldi, M. G.
    Rimini, E.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2012, 159 (02) : H130 - H139
  • [3] STRUCTURE OF AMORPHOUS GEXTE1-X SYSTEMS
    AGGARWAL, K
    MENDIRATTA, RG
    KAMAL, R
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 1977, 23 (03) : 357 - 361
  • [4] PREPARATION, CHARACTERIZATION AND PROPERTIES OF GEXTE1-X GLASSES - APPLICATION TO OPTICAL STORAGE OF INFORMATION
    CORNET, J
    ANNALES DE CHIMIE FRANCE, 1975, 10 (4-5): : 239 - 251
  • [5] Impact of atomic vacancy on phase change and structure in GexTe1-x films
    Xue, Jianzhong
    Pei, MingXu
    Sui, Yongxing
    Zhu, Xiaoqing
    Wu, Weihua
    Zheng, Long
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2020, 31 (08) : 5936 - 5940
  • [6] PHOTOEMISSION STUDIES AND BONDING IN GEXTE1-X AMORPHOUS ALLOY SYSTEM
    FISHER, GB
    ORLOWSKI, BA
    LINDAU, I
    SPICER, WE
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1973, 18 (03): : 390 - 390
  • [7] Compositional dependence of the optical properties of the amorphous GexTe1-x system
    El-Kabany, N.
    PHYSICA B-CONDENSED MATTER, 2008, 403 (18) : 2949 - 2955
  • [8] EFFECT OF ANNEALING ON AN AMORPHOUS GEXTE1-X MATRIX WITH TE CRYSTALLITES
    DENEUVILLE, A
    GERARD, P
    DEVENYI, J
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 1976, 22 (01) : 77 - 88
  • [9] CRYSTALLIZATION BEHAVIOR AND LOCAL ORDER OF AMORPHOUS GEXTE1-X FILMS
    OKABE, T
    NAKAGAWA, M
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 1986, 88 (2-3) : 182 - 195
  • [10] PHOTOCONDUCTIVITY IN AMORPHOUS GE-RICH GEXTE1-X SYSTEM
    SCHARNHORST, KP
    RIEDL, HR
    JOURNAL OF APPLIED PHYSICS, 1974, 45 (07) : 2971 - 2979