Numerical Analysis of a Stable Finite Volume Scheme for a Generalized Thermistor Model

被引:3
|
作者
Ghilani, Mustapha [3 ]
Quenjel, El Houssaine [1 ,2 ]
Rhoudaf, Mohamed [4 ]
机构
[1] Cote dAzur Univ, LJAD, CNRS, UMR 7351, Parc Valrose, F-06108 Nice 02, France
[2] Cote dAzur Univ, COFFEE Team, INRIA Sophia Antipolis Meediterranee, Parc Valrose, F-06108 Nice 02, France
[3] Moulay Ismail Univ, ENSAM Meknes, BP 15290 El Mansour, Meknes 50500, Morocco
[4] Moulay Ismail Univ, Fac Sci, BP 11201 Zitoune, Meknes 50500, Morocco
关键词
Thermistor Model; Finite Volume Scheme; Discrete Maximum Principle; Convergence; COMPRESSIBLE 2-PHASE FLOW; ELEMENT-METHOD; EXISTENCE; EQUATIONS; TEMPERATURE; CONVERGENCE; UNIQUENESS;
D O I
10.1515/cmam-2019-0144
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A generalized thermistor model is discretized thanks to a fully implicit vertex-centered finite volume scheme on simplicial meshes. An assumption on the stiffness coefficients is mandatory to prove a discrete maximum principle on the electric potential. This property is fundamental to handle the stability issues related to the Joule heating term. Then the convergence to a weak solution is established. Finally, numerical results are presented to show the efficiency of the methodology and to illustrate the behavior of the temperature together with the electric potential within the medium.
引用
收藏
页码:69 / 87
页数:19
相关论文
共 50 条
  • [11] A finite volume method for a nonlocal thermistor problem
    Dahi, Ibrahim
    Ammi, Moulay Rchid Sidi
    Hichmani, Montasser
    APPLIED NUMERICAL MATHEMATICS, 2024, 206 : 298 - 321
  • [12] The Generalized Finite Volume SUSHI Scheme for the Discretization of Richards Equation
    Brenner K.
    Hilhorst D.
    Vu-Do H.-C.
    Vietnam Journal of Mathematics, 2016, 44 (3) : 557 - 586
  • [13] Numerical solution of a non-local elliptic problem modeling a thermistor with a finite element and a finite volume method
    Nikolopoulos, C-V.
    Zouraris, G. E.
    PROGRESS IN INDUSTRIAL MATHEMATICS AT ECMI 2006, 2008, 12 : 827 - 832
  • [14] Convergence of a Finite Volume Scheme for a Corrosion Model
    Chainais-Hillairet, Claire
    Colin, Pierre-Louis
    Lacroix-Violet, Ingrid
    FINITE VOLUMES FOR COMPLEX APPLICATIONS VII - ELLIPTIC, PARABOLIC AND HYPERBOLIC PROBLEMS, FVCA 7, 2014, 78 : 547 - 555
  • [15] Improved numerical scheme for the generalized Kuramoto model
    Lee, Hyun Keun
    Hong, Hyunsuk
    Yeo, Joonhyun
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2023, 2023 (04):
  • [16] Unconditionally stable fully-discrete finite element numerical scheme for active fluid model
    Wang, Bo
    Zhang, Yuxing
    Zou, Guang-an
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2024, 96 (05) : 626 - 650
  • [17] CONVERGENCE ANALYSIS OF THE DISCRETE DUALITY FINITE VOLUME SCHEME FOR THE REGULARISED HESTON MODEL
    Tibensky, Matus
    Handlovicova, Angela
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2021, 14 (03): : 1181 - 1195
  • [18] Analysis of a finite-volume scheme for a single-species biofilm model
    Helmer, Christoph
    Juengel, Ansgar
    Zurek, Antoine
    APPLIED NUMERICAL MATHEMATICS, 2023, 185 : 386 - 405
  • [19] Numerical analysis and testing of a stable and convergent finite element scheme for approximate deconvolution turbulence models
    Dunca, Argus A.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 75 (02) : 690 - 702
  • [20] An Entropy Stable Finite Volume Scheme for the Equations of Shallow Water Magnetohydrodynamics
    Winters, Andrew R.
    Gassner, Gregor J.
    JOURNAL OF SCIENTIFIC COMPUTING, 2016, 67 (02) : 514 - 539