Numerical Analysis of a Stable Finite Volume Scheme for a Generalized Thermistor Model

被引:3
|
作者
Ghilani, Mustapha [3 ]
Quenjel, El Houssaine [1 ,2 ]
Rhoudaf, Mohamed [4 ]
机构
[1] Cote dAzur Univ, LJAD, CNRS, UMR 7351, Parc Valrose, F-06108 Nice 02, France
[2] Cote dAzur Univ, COFFEE Team, INRIA Sophia Antipolis Meediterranee, Parc Valrose, F-06108 Nice 02, France
[3] Moulay Ismail Univ, ENSAM Meknes, BP 15290 El Mansour, Meknes 50500, Morocco
[4] Moulay Ismail Univ, Fac Sci, BP 11201 Zitoune, Meknes 50500, Morocco
关键词
Thermistor Model; Finite Volume Scheme; Discrete Maximum Principle; Convergence; COMPRESSIBLE 2-PHASE FLOW; ELEMENT-METHOD; EXISTENCE; EQUATIONS; TEMPERATURE; CONVERGENCE; UNIQUENESS;
D O I
10.1515/cmam-2019-0144
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A generalized thermistor model is discretized thanks to a fully implicit vertex-centered finite volume scheme on simplicial meshes. An assumption on the stiffness coefficients is mandatory to prove a discrete maximum principle on the electric potential. This property is fundamental to handle the stability issues related to the Joule heating term. Then the convergence to a weak solution is established. Finally, numerical results are presented to show the efficiency of the methodology and to illustrate the behavior of the temperature together with the electric potential within the medium.
引用
收藏
页码:69 / 87
页数:19
相关论文
共 50 条
  • [1] The Generalized Finite Volume Sushi Scheme for the Discretization of the Peaceman Model
    Mohamed Mandari
    Mohamed Rhoudaf
    Ouafa Soualhi
    Applications of Mathematics, 2021, 66 : 115 - 143
  • [2] The Generalized Finite Volume SUSHI Scheme for the Discretization of the Peaceman Model
    Mandari, Mohamed
    Rhoudaf, Mohamed
    Soualhi, Ouafa
    APPLICATIONS OF MATHEMATICS, 2021, 66 (01) : 115 - 143
  • [3] Finite volume scheme for numerical simulation of the sediment transport model
    Mohamed, Kamel
    Seadawy, Aly
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2019, 33 (24):
  • [4] NUMERICAL ANALYSIS OF A NONLINEARLY STABLE AND POSITIVE CONTROL VOLUME FINITE ELEMENT SCHEME FOR RICHARDS EQUATION WITH ANISOTROPY
    Oulhaj, Ahmed Ait Hammou
    Cances, Clement
    Chainais-Hillairet, Claire
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2018, 52 (04): : 1533 - 1567
  • [5] Numerical Analysis of a Finite Volume Scheme for the Optimal Control of Groundwater Pollution
    Choquet, Catherine
    Diedhiou, Moussa Mory
    El Dine, Houssein Nasser
    FINITE VOLUMES FOR COMPLEX APPLICATIONS IX-METHODS, THEORETICAL ASPECTS, EXAMPLES, FVCA 9, 2020, 323 : 467 - 475
  • [6] Numerical analysis of a finite volume scheme for a seawater intrusion model with cross-diffusion in an unconfined aquifer
    Oulhaj, Ahmed Ait Hammou
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2018, 34 (03) : 857 - 880
  • [7] Design and Analysis of a Finite Volume Scheme for a Concrete Carbonation Model
    Chainais-Hillairet, Claire
    Merlet, Benoit
    Zurek, Antoine
    FINITE VOLUMES FOR COMPLEX APPLICATIONS VIII-METHODS AND THEORETICAL ASPECTS, FVCA 8, 2017, 199 : 285 - 292
  • [8] Analysis of a finite-volume-finite-element scheme for a nuclear transport model
    Choquet, Catherine
    Zimmermann, Sebastien
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2011, 31 (01) : 86 - 115
  • [9] Numerical analysis of a finite volume scheme for charge transport in perovskite solar cells
    Abdel, Dilara
    Chainais-Hillairet, Claire
    Farrell, Patricio
    Herda, Maxime
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2024, 44 (02) : 1090 - 1129
  • [10] AN UNCONDITIONALLY STABLE FINITE ELEMENT-FINITE VOLUME PRESSURE CORRECTION SCHEME FOR THE DRIFT-FLUX MODEL
    Gastaldo, Laura
    Herbin, Raphaele
    Latche, Jean-Claude
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2010, 44 (02): : 251 - 287