Rough maximal bilinear singular integrals

被引:2
|
作者
Buriankova, Eva [1 ]
Honzik, Petr [1 ]
机构
[1] Charles Univ Prague, Sokolovska 83, Prague 8, Czech Republic
关键词
Singular integrals; Bilinear operators; Maximal operators; Fourier multipliers;
D O I
10.1007/s13348-019-00239-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the rough maximal bilinear singular integral T-Omega*(f, g)(x) = sup(epsilon>0) vertical bar integral(Rn\B(0,epsilon))integral(Rn\B(0,epsilon)) Omega((y, z)/vertical bar(y, z)vertical bar)/vertical bar(y, z)vertical bar(2n) f (x - y) g(x - z) dydz vertical bar, where Omega is a function in L-infinity(S2n-1) with vanishing integral. We prove it is bounded from L-p x L-q -> L-r, where 1 < p, q < infinity and 1/r = 1/p + 1/q. We also discuss results for Omega is an element of L-s (S2n-1), 1 < s < infinity.
引用
收藏
页码:431 / 446
页数:16
相关论文
共 50 条