Rough maximal bilinear singular integrals

被引:2
|
作者
Buriankova, Eva [1 ]
Honzik, Petr [1 ]
机构
[1] Charles Univ Prague, Sokolovska 83, Prague 8, Czech Republic
关键词
Singular integrals; Bilinear operators; Maximal operators; Fourier multipliers;
D O I
10.1007/s13348-019-00239-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the rough maximal bilinear singular integral T-Omega*(f, g)(x) = sup(epsilon>0) vertical bar integral(Rn\B(0,epsilon))integral(Rn\B(0,epsilon)) Omega((y, z)/vertical bar(y, z)vertical bar)/vertical bar(y, z)vertical bar(2n) f (x - y) g(x - z) dydz vertical bar, where Omega is a function in L-infinity(S2n-1) with vanishing integral. We prove it is bounded from L-p x L-q -> L-r, where 1 < p, q < infinity and 1/r = 1/p + 1/q. We also discuss results for Omega is an element of L-s (S2n-1), 1 < s < infinity.
引用
收藏
页码:431 / 446
页数:16
相关论文
共 50 条
  • [1] Rough maximal bilinear singular integrals
    Eva Buriánková
    Petr Honzík
    Collectanea Mathematica, 2019, 70 : 431 - 446
  • [2] Rough bilinear singular integrals
    Grafakos, Loukas
    He, Danqing
    Honzik, Petr
    ADVANCES IN MATHEMATICS, 2018, 326 : 54 - 78
  • [3] Weighted estimates for maximal bilinear rough singular integrals via sparse dominations
    Zhidan Wang
    Qingying Xue
    Xinchen Duan
    Collectanea Mathematica, 2022, 73 : 55 - 73
  • [4] Weighted estimates for maximal bilinear rough singular integrals via sparse dominations
    Wang, Zhidan
    Xue, Qingying
    Duan, Xinchen
    COLLECTANEA MATHEMATICA, 2022, 73 (01) : 55 - 73
  • [5] BILINEAR SINGULAR-INTEGRALS AND MAXIMAL FUNCTIONS
    JONES, PW
    LECTURE NOTES IN MATHEMATICS, 1984, 1043 : 317 - 317
  • [6] Improved estimates for bilinear rough singular integrals
    He, Danqing
    Park, Bae Jun
    MATHEMATISCHE ANNALEN, 2023, 386 (3-4) : 1951 - 1978
  • [7] Improved estimates for bilinear rough singular integrals
    Danqing He
    Bae Jun Park
    Mathematische Annalen, 2023, 386 : 1951 - 1978
  • [8] Lp bounds for singular integrals and maximal singular integrals with rough kernels
    Grafakos, L
    Stefanov, A
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1998, 47 (02) : 455 - 469
  • [9] A note on maximal singular integrals with rough kernels
    Xiao Zhang
    Feng Liu
    Journal of Inequalities and Applications, 2020
  • [10] An Endpoint Estimate for Rough Maximal Singular Integrals
    Honzik, Petr
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2020, 2020 (19) : 6120 - 6134