The Boundedness of Some Integral Operators on Weighted Hardy Spaces Associated with Schrodinger Operators

被引:0
|
作者
Wang, Hua [1 ]
机构
[1] Hunan Univ, Coll Math & Econometr, Changsha 410082, Hunan, Peoples R China
关键词
NORM INEQUALITIES; IMAGINARY POWERS; COMMUTATORS; BMO;
D O I
10.1155/2015/823862
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let L = -Delta + V be a Schrodinger operator acting on L-2(R-n), n >= 1, where V not equivalent to 0 is a nonnegative locally integrable function on R-n In this paper, we will first define molecules for weighted Hardy spaces H-L(P)(w) ( 0 < p <= 1) associated with.. and establish their molecular characterizations. Then, by using the atomic decomposition and molecular characterization of H-L(P)(w), we will show that the imaginary power L-i gamma is bounded on H-L(P)(w) for n/(n + 1) < p <= 1, and the fractional integral operator L-alpha/2 is bounded from H-L(P)(w) to H-L(q)(w(q/p)), where 0 < alpha < min{n/2, 1}, n/(n + 1) < p <= n/(n+alpha), and 1/q = 1/p-alpha/n.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Boundedness of Singular Integral Operators on Local Hardy Spaces and Dual Spaces
    Wei Ding
    YongSheng Han
    YuePing Zhu
    Potential Analysis, 2021, 55 : 419 - 441
  • [32] Boundedness of Singular Integral Operators on Local Hardy Spaces and Dual Spaces
    Ding, Wei
    Han, YongSheng
    Zhu, YuePing
    POTENTIAL ANALYSIS, 2021, 55 (03) : 419 - 441
  • [33] On Isomorphisms of Hardy Spaces Associated with Schrodinger Operators
    Dziubanski, Jacek
    Zienkiewicz, Jacek
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2013, 19 (03) : 447 - 456
  • [34] On the Boundedness of Integral Operators in Weighted Grand Morrey Spaces
    Kokilashvili, V. M.
    Meskhi, A. N.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2021, 312 (01) : 194 - 206
  • [35] On the Boundedness of Integral Operators in Weighted Grand Morrey Spaces
    V. M. Kokilashvili
    A. N. Meskhi
    Proceedings of the Steklov Institute of Mathematics, 2021, 312 : 194 - 206
  • [36] THE BOUNDEDNESS OF MULTIDIMENSIONAL HARDY OPERATORS IN WEIGHTED VARIABLE LEBESGUE SPACES
    Bandaliev, R. A.
    LITHUANIAN MATHEMATICAL JOURNAL, 2010, 50 (03) : 249 - 259
  • [37] Weighted anisotropic product Hardy spaces and boundedness of sublinear operators
    Bownik, Marcin
    Li, Baode
    Yang, Dachun
    Zhou, Yuan
    MATHEMATISCHE NACHRICHTEN, 2010, 283 (03) : 392 - 442
  • [38] Boundedness of Pseudo-Differential Operators on Weighted Hardy Spaces
    Do, Tan Duc
    VIETNAM JOURNAL OF MATHEMATICS, 2025, 53 (02) : 427 - 439
  • [39] The boundedness of multidimensional hardy operators in weighted variable Lebesgue spaces
    R. A. Bandaliev
    Lithuanian Mathematical Journal, 2010, 50 : 249 - 259
  • [40] Weighted Anisotropic Hardy Spaces and Their Applications in Boundedness of Sublinear Operators
    Bownik, Marcin
    Li, Baode
    Yang, Dachun
    Zhou, Yuan
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2008, 57 (07) : 3065 - 3100