ROBUST ADAPTED PRINCIPAL COMPONENT ANALYSIS FOR FACE RECOGNITION

被引:6
|
作者
Chen, Shaokang [1 ]
Lovell, Brian C. [1 ]
Shan, Ting [1 ]
机构
[1] Univ Queensland, Sch Informat Technol & Elect Engn, NICTA, St Lucia, Qld 4067, Australia
关键词
Face recognition; pose; illumination and expression; face subspace; space rotation; ILLUMINATION; APPEARANCE; EIGENFACES; MODELS; POSE; PCA;
D O I
10.1142/S0218001409007284
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recognizing faces with uncontrolled pose, illumination, and expression is a challenging task due to the fact that features insensitive to one variation may be highly sensitive to the other variations. Existing techniques dealing with just one of these variations are very often unable to cope with the other variations. The problem is even more difficult in applications where only one gallery image per person is available. In this paper, we describe a recognition method, Adapted Principal Component Analysis (APCA), that can simultaneously deal with large variations in both illumination and facial expression using only a single gallery image per person. We have now extended this method to handle head pose variations in two steps. The first step is to apply an Active Appearance Model (AAM) to the non-frontal face image to construct a synthesized frontal face image. The second is to use APCA for classification robust to lighting and pose. The proposed technique is evaluated on three public face databases - Asian Face, Yale Face, and FERET Database - with images under different lighting conditions, facial expressions, and head poses. Experimental results show that our method performs much better than other recognition methods including PCA, FLD, PRM and LTP. More specifically, we show that by using AAM for frontal face synthesis from high pose angle faces, the recognition rate of our APCA method increases by up to a factor of 4.
引用
收藏
页码:491 / 520
页数:30
相关论文
共 50 条
  • [11] Modular Image Principal Component Analysis for Face Recognition
    Pereira, Jose Francisco
    Cavalcanti, George D. C.
    Ren, Tsang Ing
    IJCNN: 2009 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1- 6, 2009, : 1969 - 1974
  • [12] Face recognition using improved principal component analysis
    Nara, Y
    Yang, JM
    Suematsu, Y
    MHS2003: PROCEEDINGS OF 2003 INTERNATIONAL SYMPOSIUM ON MICROMECHATRONICS AND HUMAN SCIENCE, 2003, : 77 - 82
  • [13] Face recognition using kernel principal component analysis
    Kim, KI
    Jung, K
    Kim, HJ
    IEEE SIGNAL PROCESSING LETTERS, 2002, 9 (02) : 40 - 42
  • [14] COMBINING SPEEDED-UP ROBUST FEATURES WITH PRINCIPAL COMPONENT ANALYSIS IN FACE RECOGNITION SYSTEM
    Lin, Shinfeng D.
    Liu, Bo-Feng
    Lin, Jia-Hong
    INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2012, 8 (12): : 8545 - 8556
  • [15] Independent component analysis, principal component analysis and rough sets in face recognition
    Swiniarski, RW
    Skowron, A
    TRANSACTIONS ON ROUGH SETS I, 2004, 3100 : 392 - 404
  • [16] Iris recognition based on robust principal component analysis
    Karn, Pradeep
    He, Xiao Hai
    Yang, Shuai
    Wu, Xiao Hong
    JOURNAL OF ELECTRONIC IMAGING, 2014, 23 (06)
  • [17] Modular two-dimensional principal component regression for robust face recognition
    Zhang, Zhenyue
    Jiang, Mingyan
    Ben, Xianye
    Li, Fei
    Journal of Fiber Bioengineering and Informatics, 2015, 8 (02): : 365 - 372
  • [18] Weighted Modular Image Principal Component Analysis for face recognition
    Cavalcanti, George D. C.
    Ren, Tsang Ing
    Pereira, Jose Francisco
    EXPERT SYSTEMS WITH APPLICATIONS, 2013, 40 (12) : 4971 - 4977
  • [19] Two Dimension Locally Principal Component Analysis for Face Recognition
    Lin, Yu-sheng
    Wang, Jian-guo
    Yang, Jing-yu
    PROCEEDINGS OF THE 2008 CHINESE CONFERENCE ON PATTERN RECOGNITION (CCPR 2008), 2008, : 232 - 234
  • [20] Histogram-Enhanced Principal Component Analysis for Face Recognition
    Sevcenco, Ana-Maria
    Lu, Wu-Sheng
    2009 IEEE PACIFIC RIM CONFERENCE ON COMMUNICATIONS, COMPUTERS AND SIGNAL PROCESSING, VOLS 1 AND 2, 2009, : 175 - 180