Numerical study on laminar burning velocity and NO formation of premixed methane-hydrogen-air flames

被引:101
|
作者
Hu, Erjiang [1 ]
Huang, Zuohua [1 ]
Zheng, Jianjun [1 ]
Li, Qianqian [1 ]
He, Jiajia [1 ]
机构
[1] Xi An Jiao Tong Univ, State Key Lab Multiphase Flow Power Engn, Xian 710049, Peoples R China
基金
中国国家自然科学基金;
关键词
Methane; Hydrogen; Laminar burning velocity; NO formation; NATURAL-GAS; POLLUTANT EMISSIONS; COMBUSTION; ENGINE; BLENDS; PROPAGATION; EFFICIENCY; INJECTION; KINETICS; PROPANE;
D O I
10.1016/j.ijhydene.2009.05.080
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Numerical study on laminar burning velocity and NO formation of the premixed methane-hydrogen-air flames was conducted at room temperature and atmospheric pressure. The unstretched laminar burning velocity, adiabatic flame temperature, and radical mole fractions of H, OH and NO are obtained at various equivalence ratios and hydrogen fractions. The results show that the unstretched laminar burning velocity is increased with the increase of hydrogen fraction. Methane-dominated combustion is presented when hydrogen fraction is less than 40%, where laminar burning velocity is slightly increased with the increase of hydrogen addition. When hydrogen fraction is larger than 40%, laminar burning velocity is exponentially increased with the increase of hydrogen fraction. A strong correlation exists between burning velocity and maximum radical concentration of H + OH radicals in the reaction zone of premixed flames. High burning velocity corresponds to high radical concentration in the reaction zone. With the increase of hydrogen fraction, the overall activation energy of methane-hydrogen mixture is decreased, and the inner layer temperature and Zeldovich number are also decreased. All these factors contribute to the enhancement of combustion as hydrogen is added. The curve of NO versus equivalence ratio shows two peaks, where they occur at the stoichiometric mixture due to Zeldovich thermal-NO mechanism and at the rich mixture with equivalence ratio of 1.3 due to the Fenimore prompt-NO mechanism. In the stoichiometric flames, hydrogen addition has little influence on NO formation, while in rich flames, NO concentration is significantly decreased. Different NO formation responses to stretched and unstretched flames by hydrogen addition are discussed. (C) 2009 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:6545 / 6557
页数:13
相关论文
共 50 条
  • [41] Stretch effects on the burning velocity of turbulent premixed hydrogen/air flames
    Chen, JH
    Im, HG
    PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2000, 28 (01) : 211 - 218
  • [42] NUMERICAL INVESTIGATION ON LAMINAR BURNING VELOCITY OF HYDROGEN-METHANE/AIR MIXTURES: A REVIEW
    Zaidi, Nur Hazwani Fatihah M.
    Kasmani, Rafiziana M.
    Mustafa, Azeman
    JOURNAL OF ENGINEERING SCIENCE AND TECHNOLOGY, 2015, 10 : 40 - 49
  • [43] Effects of hydrogen enrichment on adiabatic burning velocity and NO formation in methane plus air flames
    Coppens, F. H. V.
    De Ruyck, J.
    Konnov, A. A.
    EXPERIMENTAL THERMAL AND FLUID SCIENCE, 2007, 31 (05) : 437 - 444
  • [44] AERODYNAMIC QUENCHING AND BURNING VELOCITY OF TURBULENT PREMIXED METHANE-AIR FLAMES
    Nivarti, Girish V.
    Cant, R. Stewart
    ASME TURBO EXPO: TURBINE TECHNICAL CONFERENCE AND EXPOSITION, 2015, VOL 4B, 2015,
  • [45] Laminar burning velocity and Markstein length of ammonia/air premixed flames at various pressures
    Hayakawa, Akihiro
    Goto, Takashi
    Mimoto, Rentaro
    Arakawa, Yoshiyuki
    Kudo, Taku
    Kobayashi, Hideaki
    FUEL, 2015, 159 : 98 - 106
  • [46] Chemical structure and laminar burning velocity of atmospheric pressure premixed ammonia/hydrogen flames
    Osipova, Ksenia N.
    Korobeinichev, Oleg P.
    Shmakov, Andrey G.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (80) : 39942 - 39954
  • [47] On droplet enhancement of the burning velocity of laminar premixed spray flames
    Greenberg, JB
    Silverman, I
    Tambour, Y
    COMBUSTION AND FLAME, 1998, 113 (1-2) : 271 - 273
  • [48] A numerical study on the laminar diffusion and premixed flames for methane -air and methane -ethanol with ozone at atmospheric and elevated pressures
    Cheng, Xinwei
    Scribano, Gianfranco
    COMBUSTION AND FLAME, 2024, 259
  • [49] Temperature effect on turbulent burning velocity of lean premixed hydrogen/air flames
    Wang, Yiqing
    Xu, Chao
    Chi, Cheng
    Yang, Yue
    Chen, Zheng
    PHYSICS OF FLUIDS, 2024, 36 (12)
  • [50] A Numerical Study on Premixed Turbulent Planar Ammonia/Air and Ammonia/Hydrogen/Air Flames: An Analysis on Flame Displacement Speed and Burning Velocity
    Parsa Tamadonfar
    Shervin Karimkashi
    Ossi Kaario
    Ville Vuorinen
    Flow, Turbulence and Combustion, 2023, 111 (2) : 717 - 741