Analysis and design of nonlinear resonances via singularity theory

被引:25
|
作者
Cirillo, G. I. [1 ]
Habib, G. [2 ]
Kerschen, G. [2 ]
Sepulchre, R. [1 ]
机构
[1] Univ Cambridge, Dept Engn, Control Grp, Cambridge, England
[2] Univ Liege, Dept Aerosp & Mech Engn, S3L, Liege, Belgium
基金
美国国家科学基金会; 欧洲研究理事会;
关键词
Nonlinear frequency response; Detached resonance curve; Singularity theory; BIFURCATION-ANALYSIS; SYSTEMS;
D O I
10.1016/j.jsv.2016.12.044
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Bifurcation theory and continuation methods are well-established tools for the analysis of nonlinear mechanical systems subject to periodic forcing. We illustrate the added value and the complementary information provided by singularity theory with one distinguished parameter. While tracking bifurcations reveals the qualitative changes in the behaviour, tracking singularities reveals how structural changes are themselves organised in parameter space. The complementarity of that information is demonstrated in the analysis of detached resonance curves in a two-degree-of-freedom system. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:295 / 306
页数:12
相关论文
共 50 条