High Thermal Conductivity Composite Sheets with Controlled Nanostructures for Electric Devices

被引:0
|
作者
Takezawa, Yoshitaka [1 ]
Nishiyama, Tomoo [1 ]
Katagi, Hideyuki [1 ]
Hara, Naoki [1 ]
机构
[1] Hitachi Chem Co Ltd, Tsukuba Res Lab, 48 Wadai, Tsukuba, Ibaraki 3004247, Japan
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We have developed the novel network polymer with mesogen to improve the thermal conductivity of epoxy resins by controlling the higher order structure. To obtain the evidence for the higher order structure, we carried out direct observations at both mesoscopic and microscopic scales. The developed resin shows an obvious lattice structure in the transmission electron microscope (TEM) image and large domains with sizes of about several micrometers in the atomic force microscope (AFM) image and the polarized optical microscope (POM). On the other hand, no domains of order-structures can be recognized in the TEM, AFM images and POM of conventional resin. Furthermore, the formed nanostructure of composite is confirmed by the small-angle X-ray diffraction. Thermal conductivities of developed epoxy resins are 1.0 W/m center dot K at a maximum and five times higher than that of the conventional ones. We mixed these resins with conventional ceramic fillers, then the new epoxy composites (10 to 15 W/m center dot K) have been obtained. Fabricated B-stage (precured) sheet is flexible and the cured one shows good electrical properties. Thus the developed high thermal conductive composites may be applicable to the insulating adhesive sheets for power devices, etc.
引用
收藏
页码:326 / 329
页数:4
相关论文
共 50 条
  • [21] Cellulose/boron nitride core-shell microbeads providing high thermal conductivity for thermally conductive composite sheets
    Nagaoka, Shoji
    Jodai, Takuma
    Kameyama, Yoshihiro
    Horikawa, Maki
    Shirosaki, Tomohiro
    Ryu, Naoya
    Takafuji, Makoto
    Sakurai, Hideo
    Ihara, Hirotaka
    RSC ADVANCES, 2016, 6 (39): : 33036 - 33042
  • [22] Thermal conductivity and thermal boundary resistance of nanostructures
    Termentzidis, Konstantinos
    Parasuraman, Jayalakshmi
    Da Cruz, Carolina Abs
    Merabia, Samy
    Angelescu, Dan
    Marty, Frederic
    Bourouina, Tarik
    Kleber, Xavier
    Chantrenne, Patrice
    Basset, Philippe
    NANOSCALE RESEARCH LETTERS, 2011, 6
  • [23] Thermal conductivity and thermal boundary resistance of nanostructures
    Konstantinos Termentzidis
    Jayalakshmi Parasuraman
    Carolina Abs Da Cruz
    Samy Merabia
    Dan Angelescu
    Frédéric Marty
    Tarik Bourouina
    Xavier Kleber
    Patrice Chantrenne
    Philippe Basset
    Nanoscale Research Letters, 6
  • [24] Thermal shock resistances of high thermal conductivity C/C-composite as plasma facing materials for fusion reactor devices
    Sato, S
    Toida, T
    Teruyama, K
    Suzuki, T
    SCIENCE REPORTS OF THE RESEARCH INSTITUTES TOHOKU UNIVERSITY SERIES A-PHYSICS CHEMISTRY AND METALLURGY, 1997, 45 (01): : 99 - 104
  • [25] Composite filament with super high effective thermal conductivity
    Kang, Zhanxiao
    Hong, Yang
    Jiang, Shoukun
    Fan, Jintu
    MATERIALS TODAY PHYSICS, 2023, 34
  • [26] Ultrafine grained copper alloy sheets having both high strength and high electric conductivity
    Takata, Naoki
    Lee, Seong-Hee
    Tsuji, Nobuhiro
    MATERIALS LETTERS, 2009, 63 (21) : 1757 - 1760
  • [27] Thermal conductivity of GaAs/Ge nanostructures
    Jia, Roger
    Zeng, Lingping
    Chen, Gang
    Fitzgerald, Eugene A.
    APPLIED PHYSICS LETTERS, 2017, 110 (22)
  • [28] EFFECTIVE THERMAL CONDUCTIVITY OF NANOSTRUCTURES: A REVIEW
    Lebon, Georgy
    Machrafi, Hatim
    ATTI ACCADEMIA PELORITANA DEI PERICOLANTI-CLASSE DI SCIENZE FISICHE MATEMATICHE E NATURALI, 2019, 97
  • [29] Strain effects on the thermal conductivity of nanostructures
    Li, Xiaobo
    Maute, Kurt
    Dunn, Martin L.
    Yang, Ronggui
    PHYSICAL REVIEW B, 2010, 81 (24)
  • [30] Prediction of the Thermal Conductivity of ZnO Nanostructures
    Chantrenne, P.
    Ould-Lahoucine, C.
    JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2012, 134 (04):