Boundary stabilization of a hybrid system

被引:0
|
作者
Liu, KS [1 ]
Liu, ZY [1 ]
机构
[1] Zhejiang Univ, Dept Math Appl, Hangzhou 310027, Peoples R China
关键词
boundary stabilization; beam; hybrid system; backward well-posedness; spectral completeness; multiplier technique;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the boundary stabilization of a degenerate hybrid system composed of an Euler-Bernoulli beam with a tip mass. It is proved that the system is exponentially stabilizable when the usual velocity feedback controls are applied at the end with the tip mass. We also establish time reversibility and spectral completeness of the closed-loop system.
引用
收藏
页码:95 / 101
页数:7
相关论文
共 50 条
  • [31] Boundary stabilization of a Bresse-type system
    Khemmoudj, Ammar
    Hamadouche, Taklit
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2016, 39 (12) : 3282 - 3293
  • [32] INDIRECT STABILIZATION OF WEAKLY COUPLED SYSTEMS WITH HYBRID BOUNDARY CONDITIONS
    Alabau-Boussouira, Fatiha
    Cannarsa, Piermarco
    Guglielmi, Roberto
    MATHEMATICAL CONTROL AND RELATED FIELDS, 2011, 1 (04) : 413 - 436
  • [33] Boundary stabilization of a reaction-diffusion system weakly coupled at the boundary
    Ghattassi, Mohamed
    Laleg, Taous Meriem
    IFAC PAPERSONLINE, 2020, 53 (02): : 16537 - 16542
  • [35] Stabilization of a hybrid system with a nonlinear nonmonotone feedback
    Feireisl, E
    O'Dowd, G
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1998, 326 (03): : 323 - 328
  • [36] Existence and boundary stabilization of solutions for the coupled semilinear system
    Marinho, A. O.
    Clark, H. R.
    Clark, M. R.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (12) : 4226 - 4244
  • [37] Boundary stabilization and a problem of transmission for a system of propagation of sound
    Kapitonov, Boris V.
    Menzala, G. Perla
    FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA, 2006, 49 (01): : 107 - 132
  • [38] Boundary Stabilization of a Coupled Wave-ODE System
    Zhou Zhongcheng
    Tang Shuxia
    2011 30TH CHINESE CONTROL CONFERENCE (CCC), 2011, : 1048 - 1052
  • [39] Boundary Stabilization of a Thermoelastic Diffusion System of Type II
    Aouadi, Moncef
    Mahfoudhi, Imed
    Moulahi, Taoufik
    ACTA APPLICANDAE MATHEMATICAE, 2020, 169 (01) : 499 - 522
  • [40] Adaptive stabilization of a Timoshenko system by boundary feedback controls
    Hassan, Jamilu Hashim
    Tatar, Nasser-eddine
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (02) : 657 - 666