Graph ensemble deep random vector functional link network for traffic forecasting

被引:17
|
作者
Du, Liang [1 ]
Gao, Ruobin [1 ]
Suganthan, Ponnuthurai Nagaratnam [2 ,3 ]
Wang, David Z. W. [1 ]
机构
[1] Nanyang Technol Univ, Sch Civil & Environm Engn, Singapore, Singapore
[2] Qatar Univ, Coll Engn, KINDI Ctr Comp Res, Doha, Qatar
[3] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore, Singapore
关键词
Spatiotemporal forecasting; Traffic forecasting; Ensemble learning; Feature selection; Ensemble deep random vector functional; link; NEURAL-NETWORKS; REGRESSION; PREDICTION; MODEL;
D O I
10.1016/j.asoc.2022.109809
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Traffic forecasting is crucial to achieving a smart city as it facilitates public transportation management, autonomous driving, and the resource relocation of the sharing economy. Traffic forecasting belongs to the challenging spatiotemporal forecasting task, which is highly demanding because of the complicated geospatial correlation between traffic nodes, inconsistent and highly non-linear temporal patterns due to various events, and sporadic traffic accidents. Previous graph neural network (GNN) models built for transportation forecasting feature the sophisticated structure and heavy computation cost as they combine the deep neural network and graph machine learning to capture the spatiotemporal dynamics for the whole transportation network. However, it may be more practical for practitioners to perform node-wise forecasting for specific nodes of interest rather than network-wise forecasting. To mitigate the gaps mentioned above, we propose a novel graph ensemble deep random vector functional link network (GEdRVFL) to forecast the future traffic volume by combining the well-performing ensemble deep random vector functional link (EdRVFL) with the graph convolution layer for a specific node and realize the node-wise traffic forecasting. After a comprehensive comparison with the state-of-the-art models, our model beats the others in four out of five cases measured by mean absolute scaled error.(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Visual Tracking With Convolutional Random Vector Functional Link Network
    Zhang, Le
    Suganthan, Ponnuthurai Nagaratnam
    IEEE TRANSACTIONS ON CYBERNETICS, 2017, 47 (10) : 3243 - 3253
  • [42] An Elitist Artificial Electric Field Algorithm Based Random Vector Functional Link Network for Cryptocurrency Prices Forecasting
    Nayak, Sarat Chandra
    Das, Subhranginee
    Dehuri, Satchidananda
    Cho, Sung-Bae
    IEEE ACCESS, 2023, 11 : 57693 - 57716
  • [43] Modes decomposition method in fusion with robust random vector functional link network for crude oil price forecasting
    Bisoi, Ranjeeta
    Dash, P. K.
    Mishra, S. P.
    APPLIED SOFT COMPUTING, 2019, 80 : 475 - 493
  • [44] Traffic speed forecasting for urban roads: A deep ensemble neural network model
    Lu, Wenqi
    Yi, Ziwei
    Wu, Renfei
    Rui, Yikang
    Ran, Bin
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2022, 593
  • [45] A deep stacked random vector functional link network autoencoder for diagnosis of brain abnormalities and breast cancer
    Nayak, Deepak Ranjan
    Dash, Ratnakar
    Majhi, Banshidhar
    Pachori, Ram Bilas
    Zhang, Yudong
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2020, 58 (58)
  • [46] Wireless Network Slice Assignment With Incremental Random Vector Functional Link Network
    He, Yulin
    Ye, Xuan
    Cui, Laizhong
    Fournier-Viger, Philippe
    Luo, Chengwen
    Huang, Joshua Zhexue
    Suganthan, Ponnuthurai Nagaratnam
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2023, 10 (03): : 1283 - 1296
  • [47] Twitter Sentiment Classification Based on Deep Random Vector Functional Link
    Henriquez, Pablo A.
    Ruz, Gonzalo A.
    2018 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2018, : 272 - 277
  • [48] Application of Random Vector Functional Link Network for Software Defect Prediction
    Malhotra, Ruchika
    Aggarwal, Deepti
    Garg, Priya
    PROCEEDINGS OF EMERGING TRENDS AND TECHNOLOGIES ON INTELLIGENT SYSTEMS (ETTIS 2021), 2022, 1371 : 127 - 143
  • [49] Electricity Load Demand Time Series Forecasting with Empirical Mode Decomposition based Random Vector Functional Link Network
    Qiu, Xueheng
    Suganthan, P. N.
    Amaratunga, Gehan A. J.
    2016 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2016, : 1394 - 1399
  • [50] High-accuracy gearbox health state recognition based on graph sparse random vector functional link network
    Li, Xin
    Yang, Yu
    Wu, Zhantao
    Yan, Ke
    Shao, Haidong
    Cheng, Junsheng
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2022, 218