SECOND-ORDER BIFURCATION OF LIMIT CYCLES FROM A QUADRATIC REVERSIBLE CENTER

被引:0
|
作者
Peng, Linping [1 ]
Huang, Bo [1 ]
机构
[1] Beihang Univ, Sch Math & Syst Sci, Limb Minist Educ, Beijing 100191, Peoples R China
基金
美国国家科学基金会;
关键词
HAMILTONIAN CENTERS; SYSTEMS; SHAPE;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article concerns the bifurcation of limit cycles from a quadratic integrable and non-Hamiltonian system. By using the averaging theory,we show that under any small quadratic homogeneous perturbation, there is at most one limit cycle for the first order bifurcation and two for the second- order bifurcation arising from the period annulus of the unperturbed system, respectively. Moreover, in each case the upper bound is sharp.
引用
收藏
页数:17
相关论文
共 50 条