In Situ Passivation for Efficient PbS Quantum Dot Solar Cells by Precursor Engineering

被引:148
|
作者
Wang, Yongjie [1 ,2 ]
Lu, Kunyuan [1 ,2 ]
Han, Lu [1 ,2 ]
Liu, Zeke [1 ,2 ]
Shi, Guozheng [1 ,2 ]
Fang, Honghua [1 ,3 ]
Chen, Si [1 ,2 ]
Wu, Tian [1 ,2 ]
Yang, Fan [1 ,2 ]
Gu, Mengfan [1 ,2 ]
Zhou, Sijie [1 ,2 ]
Ling, Xufeng [1 ,2 ]
Tang, Xun [1 ,2 ]
Zheng, Jiawei [1 ,2 ]
Loi, Maria Antonietta [3 ]
Ma, Wanli [1 ,2 ]
机构
[1] Soochow Univ, Jiangsu Key Lab Carbon Based Funct Mat & Devices, Inst Funct Nano & Soft Mat FUNSOM, 199 Ren Ai Rd,Suzhou Ind Pk, Suzhou 215123, Jiangsu, Peoples R China
[2] Soochow Univ, Collaborat Innovat Ctr Suzhou Nano Sci & Technol, 199 Ren Ai Rd,Suzhou Ind Pk, Suzhou 215123, Jiangsu, Peoples R China
[3] Univ Groningen, Zernike Inst Adv Mat, Nijenborgh 4, NL-9747 AG Groningen, Netherlands
基金
中国国家自然科学基金;
关键词
lead sources; PbS quantum dots; solar cells; surface passivation; CIRCUIT VOLTAGE DEFICIT; INFRARED PHOTODETECTORS; NANOCRYSTAL SOLIDS; SURFACE; STATES; BEHAVIOR; LIGAND;
D O I
10.1002/adma.201704871
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Current efforts on lead sulfide quantum dot (PbS QD) solar cells are mostly paid to the device architecture engineering and postsynthetic surface modification, while very rare work regarding the optimization of PbS synthesis is reported. Here, PbS QDs are successfully synthesized using PbO and PbAc2 center dot 3H(2)O as the lead sources. QD solar cells based on PbAc-PbS have demonstrated a high power conversion efficiency (PCE) of 10.82% (and independently certificated values of 10.62%), which is significantly higher than the PCE of 9.39% for PbO-PbS QD based ones. For the first time, systematic investigations are carried out on the effect of lead precursor engineering on the device performance. It is revealed that acetate can act as an efficient capping ligands together with oleic acid, providing better surface coverage and replace some of the harmful hydroxyl (OH) ligands during the synthesis. Then the acetate on the surface can be exchanged by iodide and lead to desired passivation. This work demonstrates that the precursor engineering has great potential in performance improvement. It is also pointed out that the initial synthesis is an often neglected but critical stage and has abundant room for optimization to further improve the quality of the resultant QDs, leading to breakthrough efficiency.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] PbS/CdS heterojunction quantum dot solar cells
    Sawsan Dagher
    Yousef Haik
    Nacir Tit
    Ahmad Ayesh
    Journal of Materials Science: Materials in Electronics, 2016, 27 : 3328 - 3340
  • [22] Perovskite bridging PbS quantum dot/polymer interface enables efficient solar cells
    Meng, Xing
    Chen, Yifan
    Yang, Fan
    Zhang, Jieqi
    Shi, Guozheng
    Zhang, Yannan
    Tang, Haodong
    Chen, Wei
    Liu, Yang
    Yuan, Lin
    Li, Shaojuan
    Wang, Kai
    Chen, Qi
    Liu, Zeke
    Ma, Wanli
    NANO RESEARCH, 2022, 15 (07) : 6121 - 6127
  • [23] Perovskite bridging PbS quantum dot/polymer interface enables efficient solar cells
    Xing Meng
    Yifan Chen
    Fan Yang
    Jieqi Zhang
    Guozheng Shi
    Yannan Zhang
    Haodong Tang
    Wei Chen
    Yang Liu
    Lin Yuan
    Shaojuan Li
    Kai Wang
    Qi Chen
    Zeke Liu
    Wanli Ma
    Nano Research, 2022, 15 : 6121 - 6127
  • [24] Efficient Infrared Solar Cells Employing Quantum Dot Solids with Strong Inter-Dot Coupling and Efficient Passivation
    Liu, Sisi
    Zhang, Chongjian
    Li, Shuangyuan
    Xia, Yong
    Wang, Kang
    Xiong, Kao
    Tang, Haodong
    Lian, Linyuan
    Liu, Xinxing
    Li, Ming-Yu
    Tan, Manlin
    Gao, Liang
    Niu, Guangda
    Liu, Huan
    Song, Haisheng
    Zhang, Daoli
    Gao, Jianbo
    Lan, Xinzheng
    Wang, Kai
    Sun, Xiao Wei
    Yang, Ye
    Tang, Jiang
    Zhang, Jianbing
    ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (09)
  • [25] Surface engineering of PbS quantum dot sensitized solar cells with a conversion efficiency exceeding 7%
    Jiao, Shuang
    Wang, Jin
    Shen, Qing
    Li, Yan
    Zhong, Xinhua
    JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (19) : 7214 - 7221
  • [26] Influence of Shell Thickness and Surface Passivation on PbS/CdS Core/Shell Colloidal Quantum Dot Solar Cells
    Neo, Darren C. J.
    Cheng, Cheng
    Stranks, Samuel D.
    Fairclough, Simon M.
    Kim, Judy S.
    Kirkland, Angus I.
    Smith, Jason M.
    Snaith, Henry J.
    Assender, Hazel E.
    Watt, Andrew A. R.
    CHEMISTRY OF MATERIALS, 2014, 26 (13) : 4004 - 4013
  • [27] Efficient PbS Quantum Dot Solar Cells with Both Mg-Doped ZnO Window Layer and ZnO Nanocrystal Interface Passivation Layer
    Ren, Hao
    Xu, Ao
    Pan, Yiyang
    Qin, Donghuan
    Hou, Lintao
    Wang, Dan
    NANOMATERIALS, 2021, 11 (01) : 1 - 13
  • [28] Probing and Controlling Surface Passivation of PbS Quantum Dot Solid for Improved Performance of Infrared Absorbing Solar Cells
    Zhang, Xiaoliang
    Cappel, Ute B.
    Jia, Donglin
    Zhou, Qisen
    Du, Juan
    Sloboda, Tamara
    Svanstrom, Sebastian
    Johansson, Fredrik O. L.
    Lindblad, Andreas
    Giangrisostomi, Erika
    Ovsyannikov, Ruslan
    Liu, Jianhua
    Rensmo, Hakan
    Gardner, James M.
    Johansson, Erik M. J.
    CHEMISTRY OF MATERIALS, 2019, 31 (11) : 4081 - 4091
  • [29] Low-temperature-processed SnO2-Cl for efficient PbS quantum-dot solar cells via defect passivation
    Khan, Jahangeer
    Yang, Xiaokun
    Qiao, Keke
    Deng, Hui
    Zhang, Jian
    Liu, Zhiyong
    Ahmad, Waqar
    Zhang, Jihong
    Li, Dengbing
    Liu, Huan
    Song, Haisheng
    Cheng, Chun
    Tang, Jiang
    JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (33) : 17240 - 17247
  • [30] Improving hole extraction for PbS quantum dot solar cells
    Huang, Shujuan
    Hu, Long
    Patterson, Robert.
    Zhang, Zhilong
    Yuan, Lin
    Chen, Weijian
    Hu, Yicong
    Chen, Zihan
    Gao, Yijun
    Teh, Zhi Li
    Yan, Chang
    Conibeer, Gavin J.
    2018 IEEE 7TH WORLD CONFERENCE ON PHOTOVOLTAIC ENERGY CONVERSION (WCPEC) (A JOINT CONFERENCE OF 45TH IEEE PVSC, 28TH PVSEC & 34TH EU PVSEC), 2018, : 2756 - 2758