Symmetries of the Poset of Abelian Ideals in a Borel Subalgebra

被引:0
|
作者
Cellini, Paola [1 ]
Frajria, Pierluigi Moeseneder [2 ]
Papi, Paolo [3 ]
机构
[1] Univ G dAnnunzio, Dipartimento Ingn & Geol, I-65127 Pescara, Italy
[2] Politecn Milan, Polo Reg Como, I-22100 Como, Italy
[3] Univ Roma La Sapienza, Dipartimento Matemat, I-00185 Rome, Italy
关键词
Abelian ideals of Borel subalgebras; automorphisms; Hasse graphs; EULER PRODUCT; POWERS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Elaborating on a paper of Suter, we provide a detailed description of the automorphism group of the poset of abelian ideals in a Borel subalgebra of a finite dimensional complex simple Lie algebra.
引用
收藏
页码:199 / 224
页数:26
相关论文
共 50 条
  • [31] Principal Borel ideals and Gotzmann ideals
    Bonanzinga, V
    ARCHIV DER MATHEMATIK, 2003, 81 (04) : 385 - 396
  • [32] The intersection graph of ideals of a poset
    Afkhami, Mojgan
    Khashyarmanesh, Kazem
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2014, 6 (03)
  • [33] Cofinalities of Borel ideals
    Hrusak, Michael
    Rojas-Rebolledo, Diego
    Zapletal, Jindrich
    MATHEMATICAL LOGIC QUARTERLY, 2014, 60 (1-2) : 31 - 39
  • [34] (∈, ∈ Vq)-Fuzzy Lie Subalgebra and Ideals
    Guo, Wei
    Chen, Liangyun
    INTERNATIONAL JOURNAL OF FUZZY SYSTEMS, 2016, 18 (01) : 108 - 109
  • [35] (∈, ∈ ∨ q)-fuzzy Lie subalgebra and ideals
    Davvaz, B.
    Mozafar, M.
    INTERNATIONAL JOURNAL OF FUZZY SYSTEMS, 2009, 11 (02) : 123 - 129
  • [36] Spectra of Abelian C∗-Subalgebra Sums
    Christian Fleischhack
    Vietnam Journal of Mathematics, 2019, 47 : 195 - 208
  • [37] Exploiting the lattice of ideals representation of a poset
    De Loof, Karel
    De Meyer, Hans
    De Baets, Bernard
    FUNDAMENTA INFORMATICAE, 2006, 71 (2-3) : 309 - 321
  • [39] The poset of Specht ideals for hyperoctahedral groups
    Debus, Sebastian
    Moustrou, Philippe
    Riener, Cordian
    Verdure, Hugues
    ALGEBRAIC COMBINATORICS, 2023, 6 (06): : 1593 - 1619
  • [40] Algebraic properties of ideals of poset homomorphisms
    Martina Juhnke-Kubitzke
    Lukas Katthän
    Sara Saeedi Madani
    Journal of Algebraic Combinatorics, 2016, 44 : 757 - 784