Effect of numerical integration on meshless methods

被引:52
|
作者
Babuska, Ivo [2 ]
Banerjee, Uday [1 ]
Osborn, John E. [3 ]
Zhang, Qinghui [4 ]
机构
[1] Syracuse Univ, Dept Math, Syracuse, NY 13244 USA
[2] Univ Texas Austin, Inst Computat Engn & Sci, Austin, TX 78712 USA
[3] Univ Maryland, Dept Math, College Pk, MD 20742 USA
[4] Sun Yat Sen Univ, Dept Sci Comp & Comp Applicat, Guangzhou 510275, Guangdong, Peoples R China
关键词
Galerkin methods; Meshless methods; Quadrature; Numerical integration; Error estimates; CONFORMING NODAL INTEGRATION; UNITY QUADRATURE; GALERKIN; PARTITION;
D O I
10.1016/j.cma.2009.04.008
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, we present the effect of numerical integration on meshless methods with shape functions that reproduce polynomials of degree k >= 1. The meshless method was used on a second order Neumann problem and we derived an estimate for the energy norm of the error between the exact solution and the approximate solution from the meshless method under the presence of numerical integration. This estimate was obtained under the assumption that the numerical integration scheme satisfied a form of Green's formula. We also indicated how to obtain numerical integration schemes satisfying this property. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:2886 / 2897
页数:12
相关论文
共 50 条
  • [31] A comparison of numerical integration rules for the meshless local Petrov-Galerkin method
    Mazzia, Annamaria
    Ferronato, Massimiliano
    Pini, Giorgio
    Gambolati, Giuseppe
    NUMERICAL ALGORITHMS, 2007, 45 (1-4) : 61 - 74
  • [32] The numerical analysis of 4-On-Pillars technique using meshless methods
    Vargas, K. F.
    Caldas, G. A. R.
    Belinha, J.
    Natal Jorge, R. M.
    Hernandez, P. A. G.
    Ozkomur, A.
    Smidt, R.
    Naconecy, M. M.
    Schneider, L. E.
    BIODENTAL ENGINEERING V, 2019, : 171 - 175
  • [33] Numerical simulation for solution of SEIR models by meshless and finite difference methods
    Asif, Muhammad
    Khan, Zar Ali
    Haider, Nadeem
    Al-Mdallal, Qasem
    CHAOS SOLITONS & FRACTALS, 2020, 141
  • [34] Mathematical and numerical studies on meshless methods for exterior unbounded domain problems
    Shigeta, Takemi
    Young, D. L.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 230 (17) : 6900 - 6915
  • [35] Effects of numerical formulation on magnetic field computation using meshless methods
    Lee, Kok-Meng
    Li, Qiang
    Sun, Hungson
    IEEE TRANSACTIONS ON MAGNETICS, 2006, 42 (09) : 2164 - 2171
  • [36] THE MESHLESS METHODS FOR NUMERICAL SOLUTION OF THE NONLINEAR KLEIN-GORDON EQUATION
    Rashidinia, J.
    Karmipour, Y.
    Nikan, O.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2021, 11 (02): : 436 - 447
  • [37] Numerical modeling of complex solid-fluid flows with meshless methods
    Canelas, Ricardo B.
    Ferreira, Rui M. L.
    Crespo, Alejandro J. C.
    Dominguez, Jose M.
    RIVER FLOW 2014, 2014, : 133 - 139
  • [38] Numerical comparison of two boundary meshless methods for water wave problems
    Razafizana, Zatianina
    Chen, Wen
    Fu, Zhuo-Jia
    WIT Transactions on Modelling and Simulation, 2014, 56 : 115 - 123
  • [39] Numerical comparisons of two meshless methods using radial basis functions
    Li, JC
    Hon, YC
    Chen, CS
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2002, 26 (03) : 205 - 225
  • [40] Effect of shape function on computing precision in meshless methods
    College of Transportation, Jilin University, Changchun 130022, China
    不详
    Jilin Daxue Xuebao (Gongxueban), 2007, 3 (715-720):