LOW RANK APPROXIMATION SOLUTION OF A CLASS OF GENERALIZED LYAPUNOV EQUATION

被引:0
|
作者
Duan, Xuefeng [1 ,2 ]
Jiang, Zhuling [1 ]
Liao, Anping [3 ]
机构
[1] Guilin Univ Elect Technol, Coll Math & Computat Sci, Guilin 541004, Peoples R China
[2] Guilin Univ Elect Technol, Guangxi Coll & Univ Key Lab Data Anal & Computat, Guilin 541004, Peoples R China
[3] Hunan Univ, Coll Math & Econometr, Changsha 410082, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Generalized Lyapunov equation; Bilinear model reduction; Low rank approximation solution; Numerical method; KRYLOV SUBSPACE METHODS; MATRIX EQUATION; SYSTEMS; ITERATION;
D O I
10.4208/jcm.1601-m2015-0388
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the low rank approximation solution of a generalized Lyapunov equation which arises in the bilinear model reduction. By using the variation principle, the low rank approximation solution problem is transformed into an unconstrained optimization problem, and then we use the nonlinear conjugate gradient method with exact line search to solve the equivalent unconstrained optimization problem. Finally, some numerical examples are presented to illustrate the effectiveness of the proposed methods.
引用
收藏
页码:407 / 420
页数:14
相关论文
共 50 条
  • [11] Approximation of the soliton solution for the generalized Vakhnenko equation
    Mo Jia-Qi
    CHINESE PHYSICS B, 2009, 18 (11) : 4608 - 4612
  • [12] Approximation of the soliton solution for the generalized Vakhnenko equation
    莫嘉琪
    Chinese Physics B, 2009, (11) : 4608 - 4612
  • [13] Generalized approximation to solution of the kinetic coagulation equation
    Piskunov, V.N.
    Golubev, A.I.
    Journal of Aerosol Science, 1999, 30 (Suppl. 1):
  • [14] LOW-RANK-MODIFIED GALERKIN METHODS FOR THE LYAPUNOV EQUATION
    Lundi, Kathryn
    Palitta, Davide
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2024, 62 : 1 - 21
  • [15] Revisit to the problem of generalized low rank approximation of matrices
    Lu, Chong
    Liu, Wanquan
    An, Senjian
    INTELLIGENT COMPUTING IN SIGNAL PROCESSING AND PATTERN RECOGNITION, 2006, 345 : 450 - 460
  • [16] Low-rank approximation to the solution of a nonsymmetric algebraic Riccati equation from transport theory
    Weng, Peter Chang-Yi
    Fan, Hung-Yuan
    Chu, Eric King-Wah
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 219 (02) : 729 - 740
  • [17] Real Cholesky Factor-ADI Method for Low-Rank Solution of Projected Generalized Lyapunov Equations
    Tanji, Yuichi
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2016, E99A (03): : 702 - 709
  • [18] Low-rank iterative methods for projected generalized Lyapunov equations
    Institut für Mathematik, MA 4-5, Technische Universität Berlin, Straße des 17. Juni 136, 10623 Berlin, Germany
    Electron. Trans. Numer. Anal., 2008, (187-202):
  • [19] LOW-RANK ITERATIVE METHODS FOR PROJECTED GENERALIZED LYAPUNOV EQUATIONS
    Stykel, Tatjana
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2008, 30 : 187 - 202
  • [20] High order approximations of the operator Lyapunov equation have low rank
    Luka Grubišić
    Harri Hakula
    BIT Numerical Mathematics, 2022, 62 : 1433 - 1459