LOW RANK APPROXIMATION SOLUTION OF A CLASS OF GENERALIZED LYAPUNOV EQUATION

被引:0
|
作者
Duan, Xuefeng [1 ,2 ]
Jiang, Zhuling [1 ]
Liao, Anping [3 ]
机构
[1] Guilin Univ Elect Technol, Coll Math & Computat Sci, Guilin 541004, Peoples R China
[2] Guilin Univ Elect Technol, Guangxi Coll & Univ Key Lab Data Anal & Computat, Guilin 541004, Peoples R China
[3] Hunan Univ, Coll Math & Econometr, Changsha 410082, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Generalized Lyapunov equation; Bilinear model reduction; Low rank approximation solution; Numerical method; KRYLOV SUBSPACE METHODS; MATRIX EQUATION; SYSTEMS; ITERATION;
D O I
10.4208/jcm.1601-m2015-0388
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the low rank approximation solution of a generalized Lyapunov equation which arises in the bilinear model reduction. By using the variation principle, the low rank approximation solution problem is transformed into an unconstrained optimization problem, and then we use the nonlinear conjugate gradient method with exact line search to solve the equivalent unconstrained optimization problem. Finally, some numerical examples are presented to illustrate the effectiveness of the proposed methods.
引用
收藏
页码:407 / 420
页数:14
相关论文
共 50 条
  • [1] Low rank approximation solution of a class of matrix equation
    Duan, Xuefeng
    Ding, Zhenya
    Zhang, Xinjun
    PROCEEDINGS OF THE SEVENTH INTERNATIONAL CONFERENCE OF MATRICES AND OPERATORS (MAO 2012), 2012, : 174 - 177
  • [2] Efficient low-rank solution of generalized Lyapunov equations
    Shank, Stephen D.
    Simoncini, Valeria
    Szyld, Daniel B.
    NUMERISCHE MATHEMATIK, 2016, 134 (02) : 327 - 342
  • [3] Efficient low-rank solution of generalized Lyapunov equations
    Stephen D. Shank
    Valeria Simoncini
    Daniel B. Szyld
    Numerische Mathematik, 2016, 134 : 327 - 342
  • [4] Low rank methods for a class of generalized Lyapunov equations and related issues
    Benner, Peter
    Breiten, Tobias
    NUMERISCHE MATHEMATIK, 2013, 124 (03) : 441 - 470
  • [5] Low rank methods for a class of generalized Lyapunov equations and related issues
    Peter Benner
    Tobias Breiten
    Numerische Mathematik, 2013, 124 : 441 - 470
  • [6] SOLUTION OF THE GENERALIZED EIGENVALUE EQUATION PERTURBED BY A GENERALIZED LOW RANK PERTURBATION
    ZIVKOVIC, TP
    THEORETICA CHIMICA ACTA, 1989, 76 (05): : 331 - 351
  • [7] ON THE SENSITIVITY OF THE SOLUTION OF THE GENERALIZED LYAPUNOV EQUATION
    Lee, Hosoo
    KOREAN JOURNAL OF MATHEMATICS, 2013, 21 (03): : 345 - 350
  • [8] THE SOLUTION CONSTRUCTION OF THE GENERALIZED LYAPUNOV EQUATION
    LARIN, VB
    DOKLADY AKADEMII NAUK, 1993, 328 (01) : 19 - 21
  • [9] Low rank solution of Lyapunov equations
    Li, JR
    White, J
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2002, 24 (01) : 260 - 280
  • [10] FROM LOW-RANK APPROXIMATION TO A RATIONAL KRYLOV SUBSPACE METHOD FOR THE LYAPUNOV EQUATION
    Kolesnikov, D. A.
    Oseledets, I. V.
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2015, 36 (04) : 1622 - 1637