Multicore-based performance optimization for dense matrix computation

被引:0
|
作者
Mao Guoyong [1 ]
Zhang, Xiaobin [2 ]
Li, Yun [2 ]
Li, Yujie [2 ]
Wei, Laizhi [2 ]
机构
[1] Changzhou Inst Technol, Dept Elect Informat & Elect Engn, Changzhou Key Lab Res & Applicat Software Technol, Changzhou 213002, Peoples R China
[2] Yangzhou Univ, Coll Informat Engn, Yangzhou 225009, Jiangsu, Peoples R China
来源
2010 INTERNATIONAL COLLOQUIUM ON COMPUTING, COMMUNICATION, CONTROL, AND MANAGEMENT (CCCM2010), VOL IV | 2010年
关键词
Gaussian elimination; matrix block; multicore; parallel computing;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
To make the traditional applications benefit from multicore processors, the traditional Gaussian Elimination algorithm is improved to enhance its parallel performance under multicore architecture by matrix partition. The stability of the original algorithm is guaranteed. The hit rate of cache is improved by adjusting the computation sequence, the experiment shows that the speedup can reach 1.8 under duo core CPU environment when evaluating the inverse of dense matrix.
引用
收藏
页码:9 / 12
页数:4
相关论文
共 50 条
  • [31] Multicore-based ferrofluids in zero field: initial magnetic susceptibility and self-assembly mechanisms
    Kuznetsov, Andrey A.
    Novak, Ekaterina V.
    Pyanzina, Elena S.
    Kantorovich, Sofia S.
    SOFT MATTER, 2023, 19 (24) : 4549 - 4561
  • [32] Modeling power and energy consumption of dense matrix factorizations on multicore processors
    Alonso, Pedro
    Dolz, Manuel F.
    Mayo, Rafael
    Quintana-Orti, Enrique S.
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2014, 26 (17): : 2743 - 2757
  • [33] Performance Optimization of Tridiagonal Matrix Algorithm [TDMA] on Multicore Architectures: Computational Framework and Mathematical Modelling
    Chathalingath, Anishchandran
    Manoharan, Arun
    INTERNATIONAL JOURNAL OF GRID AND HIGH PERFORMANCE COMPUTING, 2019, 11 (04) : 1 - 12
  • [34] A case study on modeling the performance of dense matrix computation: Tridiagonalization in the EigenExa eigensolver on the K computer
    Fukaya, Takeshi
    Imamura, Toshiyuki
    Yamamoto, Yusaku
    2018 IEEE INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM WORKSHOPS (IPDPSW 2018), 2018, : 1113 - 1122
  • [35] Tackling the Complexity of Timing-Relevant Deployment Decisions in Multicore-Based Embedded Automotive Software Systems
    Schwitzer, Wolfgang
    Schneider, Rolf
    Reinhardt, Dominik
    Hofstetter, Georg
    SAE INTERNATIONAL JOURNAL OF PASSENGER CARS-ELECTRONIC AND ELECTRICAL SYSTEMS, 2013, 6 (02): : 478 - 488
  • [36] Optimization of a lattice Boltzmann computation on state-of-the-art multicore platforms
    Williams, Samuel
    Carter, Jonathan
    Oliker, Jeonid
    Shalf, John
    Yelick, Katherine
    JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2009, 69 (09) : 762 - 777
  • [37] One-sided dense matrix factorizations on a multicore with multiple GPU accelerators
    Yamazaki, Ichitaro
    Tomov, Stanimire
    Dongarra, Jack
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE, ICCS 2012, 2012, 9 : 37 - 46
  • [38] Optimization of Hierarchical Matrix Computation on GPU
    Ohshima, Satoshi
    Yamazaki, Ichitaro
    Ida, Akihiro
    Yokota, Rio
    SUPERCOMPUTING FRONTIERS, SCFA 2018, 2018, 10776 : 274 - 292
  • [39] High Performance Recursive Matrix Inversion for Multicore Architectures
    Mahfoudhi, Ryma
    Achour, Sami
    Hamdi-Larbi, Olfa
    Mahjoub, Zaher
    2017 INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE COMPUTING & SIMULATION (HPCS), 2017, : 675 - 682
  • [40] Energy and Performance Tradeoffs for Matrix Multiplication on Multicore Machines
    Wang, Zhe
    Tan, Hengxing
    Ranka, Sanjay
    2012 INTERNATIONAL GREEN COMPUTING CONFERENCE (IGCC), 2012,