The ABC conjecture implies Vojta's height inequality for curves

被引:8
|
作者
Van Frankenhuysen, M [1 ]
机构
[1] Rutgers State Univ, Dept Math, Piscataway, NJ 08854 USA
关键词
ABC conjecture; the error term in the ABC conjecture; Vojta's height inequality; Diophantine approximation; Roth's theorem; type of an algebraic number; Mordell's conjecture; effective Mordell;
D O I
10.1006/jnth.2001.2769
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Following Elkies (Internat. Math. Res. Notices 7 (1991) 99-109) and Bombieri (Roth's theorem and the abc-conjecture, preprint, ETH Zurich, 1994), we show that the ABC conjecture implies the one-dimensional case of Vojta's height inequality. The main geometric tool is the construction of a Belyi function. We take care to make explicit the effectivity of the result: we show that an effective version of the ABC conjecture would imply an effective version of Roth's theorem, as well as giving an (in principle) explicit bound on the height of rational points on an algebraic curve of genus at least two. (C) 2002 Elsevier Science (USA).
引用
收藏
页码:289 / 302
页数:14
相关论文
共 50 条
  • [41] On Brauer's height zero conjecture
    Murai, Masafumi
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2012, 88 (03) : 38 - 40
  • [42] THE VANISHING OF IWASAWA'S μ-INVARIANT IMPLIES THE WEAK LEOPOLDT CONJECTURE
    Kleine, Soeren
    DOCUMENTA MATHEMATICA, 2022, 27 : 2275 - 2299
  • [43] AN INEQUALITY CONNECTED WITH GOLDBACH'S CONJECTURE
    Grytczuk, Aleksander
    Minorowicz, Dorota
    JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2009, 13 (01): : 35 - 39
  • [44] On Baker's explicit abc-conjecture
    Chim, Kwok Chi
    Shorey, Tarlok Nath
    Sinha, Sneh Bala
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2019, 94 (3-4): : 435 - 453
  • [45] The effectiveness of Siegel's theorem and the abc conjecture
    Surroca, Andrea
    JOURNAL OF NUMBER THEORY, 2007, 124 (02) : 267 - 290
  • [46] On the height conjecture for algebraic points on curves defined over number fields
    Kühn, U
    NUMBER FIELDS AND FUNCTION FIELDS - TWO PARALLEL WORLDS, 2005, 239 : 269 - 277
  • [47] A STATISTICAL VIEW ON THE CONJECTURE OF LANG ABOUT THE CANONICAL HEIGHT ON ELLIPTIC CURVES
    Le Boudec, Pierre
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 372 (12) : 8347 - 8361
  • [48] An ABC inequality for Mahler's measure
    Vaaler, Jeffrey D.
    MONATSHEFTE FUR MATHEMATIK, 2008, 154 (04): : 323 - 343
  • [49] An ABC inequality for Mahler’s measure
    Jeffrey D. Vaaler
    Monatshefte für Mathematik, 2008, 154 : 323 - 343
  • [50] HEIGHT INEQUALITY OF ALGEBRAIC POINTS ON CURVES OVER FUNCTIONAL FIELDS
    TAN, SL
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1995, 461 : 123 - 135