Attention-Weighted Federated Deep Reinforcement Learning for Device-to-Device Assisted Heterogeneous Collaborative Edge Caching

被引:107
|
作者
Wang, Xiaofei [1 ]
Li, Ruibin [1 ]
Wang, Chenyang [1 ]
Li, Xiuhua [2 ,3 ]
Taleb, Tarik [4 ,5 ,6 ]
Leung, Victor C. M. [7 ,8 ]
机构
[1] Tianjin Univ, Coll Intelligence & Comp, Tianjin 300072, Peoples R China
[2] Chongqing Univ, Minist Educ, Key Lab Dependable Serv Comp Cyber Phys Soc, Chongqing, Peoples R China
[3] Chongqing Univ, Sch Big Data & Software Engn, Chongqing 401331, Peoples R China
[4] Aalto Univ, Sch Elect Engn, Dept Commun & Networking, Espoo 02150, Finland
[5] Oulu Univ, Dept Informat Technol & Elect Engn, Oulu 90570, Finland
[6] Sejong Univ, Dept Comp & Informat Secur, Seoul 05006, South Korea
[7] Shenzhen Univ, Coll Comp Sci & Software Engn, Shenzhen 518060, Peoples R China
[8] Univ British Columbia, Dept Elect & Comp Engn, Vancouver, BC V6T 1Z4, Canada
基金
芬兰科学院; 加拿大自然科学与工程研究理事会;
关键词
Device-to-device communication; Data models; Collaboration; Servers; Delays; Computational modeling; Training; Edge caching; device to device; attention-weighted federated learning; deep reinforcement learning; INTERNET;
D O I
10.1109/JSAC.2020.3036946
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In order to meet the growing demands for multimedia service access and release the pressure of the core network, edge caching and device-to-device (D2D) communication have been regarded as two promising techniques in next generation mobile networks and beyond. However, most existing related studies lack consideration of effective cooperation and adaptability to the dynamic network environments. In this article, based on the flexible trilateral cooperation among user equipment, edge base stations and a cloud server, we propose a D2D-assisted heterogeneous collaborative edge caching framework by jointly optimizing the node selection and cache replacement in mobile networks. We formulate the joint optimization problem as a Markov decision process, and use a deep Q-learning network to solve the long-term mixed integer linear programming problem. We further design an attention-weighted federated deep reinforcement learning (AWFDRL) model that uses federated learning to improve the training efficiency of the Q-learning network by considering the limited computing and storage capacity, and incorporates an attention mechanism to optimize the aggregation weights to avoid the imbalance of local model quality. We prove the convergence of the corresponding algorithm, and present simulation results to show the effectiveness of the proposed AWFDRL framework in reducing average delay of content access, improving hit rate and offloading traffic.
引用
收藏
页码:154 / 169
页数:16
相关论文
共 50 条
  • [21] Federated Distributed Deep Reinforcement Learning for Recommendation-Enabled Edge Caching
    Zhou, Huan
    Wang, Hao
    Yu, Zhiwen
    Bin, Guo
    Xiao, Mingjun
    Wu, Jie
    IEEE TRANSACTIONS ON SERVICES COMPUTING, 2024, 17 (06) : 3640 - 3656
  • [22] Adaptive Federated Deep Reinforcement Learning for Proactive Content Caching in Edge Computing
    Qiao, Dewen
    Guo, Songtao
    Liu, Defang
    Long, Saiqin
    Zhou, Pengzhan
    Li, Zhetao
    IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2022, 33 (12) : 4767 - 4782
  • [23] Collaborative Edge Computing and Caching With Deep Reinforcement Learning Decision Agents
    Ren, Jianji
    Wang, Haichao
    Hou, Tingting
    Zheng, Shuai
    Tang, Chaosheng
    IEEE ACCESS, 2020, 8 : 120604 - 120612
  • [24] Collaborative Video Caching in the Edge Network using Deep Reinforcement Learning
    Lekharu, Anirban
    Gupta, Pranav
    Sur, Aridit
    Patra, Moumita
    ACM TRANSACTIONS ON INTERNET OF THINGS, 2024, 5 (03):
  • [25] Federated Deep Reinforcement Learning for Internet of Things With Decentralized Cooperative Edge Caching
    Wang, Xiaofei
    Wang, Chenyang
    Li, Xiuhua
    Leung, Victor C. M.
    Taleb, Tarik
    IEEE INTERNET OF THINGS JOURNAL, 2020, 7 (10) : 9441 - 9455
  • [26] Federated Distributed Deep Reinforcement Learning for Recommendation-enabled Edge Caching
    Wang, Hao
    Zhou, Huan
    Li, Mingze
    Zhao, Liang
    Leung, Victor C. M.
    IEEE INFOCOM 2024-IEEE CONFERENCE ON COMPUTER COMMUNICATIONS WORKSHOPS, INFOCOM WKSHPS 2024, 2024,
  • [27] Deep Reinforcement Learning-Based Edge Caching in Heterogeneous Networks
    Choi, Yoonjeong
    Lim, Yujin
    JOURNAL OF INFORMATION PROCESSING SYSTEMS, 2022, 18 (06): : 803 - 812
  • [28] Deep Reinforcement Learning for Collaborative Offloading in Heterogeneous Edge Networks
    Nguyen, Dinh C.
    Pathirana, Pubudu N.
    Ding, Ming
    Seneviratne, Aruna
    21ST IEEE/ACM INTERNATIONAL SYMPOSIUM ON CLUSTER, CLOUD AND INTERNET COMPUTING (CCGRID 2021), 2021, : 297 - 303
  • [29] Distributed Deep Reinforcement Learning Resource Allocation Scheme For Industry 4.0 Device-To-Device Scenarios
    Burgueno, Jesus
    Adeogun, Ramoni
    Bruun, Rasmus Liborius
    Garcia, C. Santiago Morejon
    de-la-Bandera, Isabel
    Barco, Raquel
    2021 IEEE 94TH VEHICULAR TECHNOLOGY CONFERENCE (VTC2021-FALL), 2021,
  • [30] Intelligent Reflecting Surface-Aided Device-to-Device Communication: A Deep Reinforcement Learning Approach
    Sultana, Ajmery
    Fernando, Xavier
    FUTURE INTERNET, 2022, 14 (09)