On Chebyshev-Davidson Method for Symmetric Generalized Eigenvalue Problems

被引:4
|
作者
Miao, Cun-Qiang [1 ]
机构
[1] Cent South Univ, Sch Math & Stat, Changsha 410083, Peoples R China
基金
中国国家自然科学基金;
关键词
Generalized eigenvalue problem; Davidson method; Chebyshev polynomial; Symmetric matrix; COMPUTING EIGENVALUES; LANCZOS-ALGORITHM; EIGENSOLVER; ITERATIONS; RESTART; FEAST;
D O I
10.1007/s10915-020-01360-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
As we know, polynomial filtering technique is efficient for accelerating convergence of standard eigenvalue problems, which, however, has not appeared for solving generalized eigenvalue problems. In this paper, by integrating the effectiveness and robustness of the Chebyshev polynomial filters, we propose the Chebyshev-Davidson method for computing some extreme eigenvalues and corresponding eigenvectors of generalized matrix pencils. In this method, both matrix factorizations and solving systems of linear equations are all avoided. Convergence analysis indicates that the Chebyshev-Davidson method achieves quadratic convergence locally in an ideal situation. Furthermore, numerical experiments are carried out to demonstrate the convergence properties and to show great superiority and robustness over some state-of-the art iteration methods.
引用
收藏
页数:22
相关论文
共 50 条
  • [21] Parallel Jacobi-Davidson for solving generalized eigenvalue problems
    Nool, M
    van der Ploeg, A
    VECTOR AND PARALLEL PROCESSING - VECPAR'98, 1999, 1573 : 58 - 70
  • [22] Continuous methods for symmetric generalized eigenvalue problems
    Gao, Xing-Bao
    Golub, Gene H.
    Liao, Li-Zhi
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 428 (2-3) : 676 - 696
  • [23] An algorithm for symmetric generalized inverse eigenvalue problems
    Dai, H
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1999, 296 (1-3) : 79 - 98
  • [24] A parallel Jacobi-Davidson-type method for solving large generalized eigenvalue problems in magnetohydrodynamics
    Nool, M
    Van der Ploeg, A
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2000, 22 (01): : 95 - 112
  • [25] A GENERALIZATION OF THE DAVIDSON METHOD TO LARGE NONSYMMETRIC EIGENVALUE PROBLEMS
    HIRAO, K
    NAKATSUJI, H
    JOURNAL OF COMPUTATIONAL PHYSICS, 1982, 45 (02) : 246 - 254
  • [26] An inverse free preconditioned Krylov subspace method for symmetric generalized eigenvalue problems
    Golub, GH
    Ye, Q
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2002, 24 (01): : 312 - 334
  • [27] 求解对称特征值问题的块Chebyshev-Davidson方法
    梁觊
    戴华
    数值计算与计算机应用, 2011, 32 (03) : 209 - 219
  • [28] Jacobi-Davidson methods for generalized MHD-eigenvalue problems
    Booten, A.
    Fokkema, D.
    Sleijpen, G.
    Van der vorst, H.
    Report - Department of Numerical Mathematics, 1995, (14): : 1 - 7
  • [29] Jacobi-Davidson methods for generalized MHD-eigenvalue problems
    Booten, A
    Fokkema, D
    Sleijpen, G
    VanderVorst, H
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1996, 76 : 131 - 134
  • [30] Chebyshev-t method for certain generalized eigenvalue problems occurring in hydrodynamics: a concise survey
    Arnone, Giuseppe
    Gianfrani, Jacopo A.
    Massa, Giuliana
    EUROPEAN PHYSICAL JOURNAL PLUS, 2023, 138 (03):