Data-Driven Synthetic Modeling of Trees

被引:37
|
作者
Zhang, Xiaopeng [1 ]
Li, Hongjun [1 ]
Dai, Mingrui [1 ]
Ma, Wei [2 ,3 ]
Quan, Long [4 ]
机构
[1] Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit, Beijing 100191, Peoples R China
[2] Peking Univ, Key Lab Machine Percept, Minist Educ, Beijing 100871, Peoples R China
[3] Beijing Univ Technol, Coll Comp Sci, Beijing 100871, Peoples R China
[4] Hong Kong Univ Sci & Technol, Dept Comp Sci & Engn, Hong Kong, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
Tree modeling; scan data; marching cylinder; hierarchical particle flow; tree structure; RECONSTRUCTION;
D O I
10.1109/TVCG.2014.2316001
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this paper, we develop a data-driven technique to model trees from a single laser scan. A multi-layer representation of the tree structure is proposed to guide the modeling process. In this process, a marching cylinder algorithm is first developed to construct visible branches from the laser scan data. Three levels of crown feature points are then extracted from the scan data to synthesize three layers of non-visible branches. Based on the hierarchical particle flow technique, the branch synthesis method has the advantage of producing visually convincing tree models that are consistent with scan data. User intervention is extremely limited. The robustness of this technique has been validated on both conifer and broadleaf trees.
引用
收藏
页码:1214 / 1226
页数:13
相关论文
共 50 条
  • [21] A Data-Driven Recipe Simulation for Synthetic Rubber Production
    Park, Kikun
    Park, Hanbyeoul
    Bae, Hyerim
    IEEE ACCESS, 2022, 10 : 129408 - 129418
  • [22] Enhancing Fermentation Process Monitoring through Data-Driven Modeling and Synthetic Time Series Generation
    Kwon, Hyun J.
    Shiu, Joseph H.
    Yamakawa, Celina K.
    Rivera, Elmer C.
    BIOENGINEERING-BASEL, 2024, 11 (08):
  • [23] Data-Driven Generation of Synthetic Behavioral Feature Vectors Modeling Children with Autism Spectrum Disorders
    Baraka, Kim
    Melo, Francisco S.
    Veloso, Manuela
    2017 THE SEVENTH JOINT IEEE INTERNATIONAL CONFERENCE ON DEVELOPMENT AND LEARNING AND EPIGENETIC ROBOTICS (ICDL-EPIROB), 2017, : 202 - 208
  • [24] Interpretable data-driven modeling of hyperelastic membranes
    Salamatova, Victoria
    Liogky, Alexey
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING, 2023, 39 (11)
  • [25] Experimental data-driven tumor modeling for chemotherapy
    Drexler, Daniel Andras
    Ferenci, Tamas
    Fueredi, Andras
    Szakacs, Gergely
    Kovacs, Levente
    IFAC PAPERSONLINE, 2020, 53 (02): : 16245 - 16250
  • [26] Data-driven Modeling and Simulation of Thermal Fuses
    Horn, Markus
    Brabetz, Ludwig
    Ayeb, Mohamed
    2018 IEEE INTERNATIONAL CONFERENCE ON ELECTRICAL SYSTEMS FOR AIRCRAFT, RAILWAY, SHIP PROPULSION AND ROAD VEHICLES & INTERNATIONAL TRANSPORTATION ELECTRIFICATION CONFERENCE (ESARS-ITEC), 2018,
  • [27] Data-Driven Statistical Modeling of a Cube Regrasp
    Paolini, Robert
    Mason, Matthew T.
    2016 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS 2016), 2016, : 2554 - 2560
  • [28] Data-Driven GENERIC Modeling of Poroviscoelastic Materials
    Ghnatios, Chady
    Alfaro, Iciar
    Gonzalez, David
    Chinesta, Francisco
    Cueto, Elias
    ENTROPY, 2019, 21 (12)
  • [29] Dynamic Data-Driven Modeling of Pharmaceutical Processes
    Boukouvala, F.
    Muzzio, F. J.
    Ierapetritou, Marianthi G.
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2011, 50 (11) : 6743 - 6754
  • [30] Data-Driven Mathematical Modeling of Facial Attractiveness
    Nakamura, Koyo
    I-PERCEPTION, 2019, 10 : 29 - 29