Carrier Collection in Quantum Dots Solar Cells with Barrier Modification

被引:0
|
作者
Dai, Yushuai [1 ]
Polly, Stephen [1 ]
Hellstroem, Staffan [1 ]
Forbes, David V. [1 ]
Hubbard, Seth M. [1 ]
机构
[1] Rochester Inst Technol, NanoPower Res Lab, 111 Lomb Mem Dr, Rochester, NY 14623 USA
关键词
PERFORMANCE; EFFICIENCY; DYNAMICS;
D O I
暂无
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In As quantum dot (QD) has been attractive in high conversion efficiency solar cell applications, due to its extended absorption in the infrared spectrum and as a promising material for the intermediate band solar cell (IBSC). To enhance the sequential absorption process towards the concept of IBSC, modified barriers of InGaP were applied to suppress thermal escape and tunneling process in InAs quantum dots solar cells (QDSCs). Despite improved spectral response from QD absorption, InAs QDSC with InGaP barrier is associated with degradation in the bulk spectral response at room temperature; the carrier collection can be optimized via adjusting operation condition and solar cell design.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Spin polarization of neutral excitons in quantum dots: the role of the carrier collection area
    Moskalenko, Evgenii
    Larsson, Arvid
    Holtz, Per Olof
    NANOTECHNOLOGY, 2010, 21 (34)
  • [42] Modeling charge carrier collection in multiple exciton generating PbSe quantum dots
    Kirchartz, Thomas
    Rau, Uwe
    THIN SOLID FILMS, 2009, 517 (07) : 2438 - 2442
  • [43] Enhanced carrier extraction from Ge quantum dots in Si solar cells under strong photoexcitation
    Tayagaki, Takeshi
    Usami, Noritaka
    Pan, Wugen
    Hoshi, Yusuke
    Ooi, Kazufumi
    Kanemitsu, Yoshihiko
    APPLIED PHYSICS LETTERS, 2012, 101 (13)
  • [44] Graphene quantum dots doping SnO2 for improving carrier transport of perovskite solar cells
    Lu, Chaoqun
    Zhang, Weijia
    Jiang, Zhaoyi
    Zhang, Yulong
    Ni, Cong
    CERAMICS INTERNATIONAL, 2021, 47 (21) : 29712 - 29721
  • [45] Relationship between bark carrier distribution and photogenerated carrier collection in solar cells
    Markvart, T
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 1996, 43 (06) : 1034 - 1036
  • [46] Photoexcited carrier dynamics in colloidal quantum dot solar cells: insights into individual quantum dots, quantum dot solid films and devices
    Zhang, Yaohong
    Wu, Guohua
    Liu, Feng
    Ding, Chao
    Zou, Zhigang
    Shen, Qing
    CHEMICAL SOCIETY REVIEWS, 2020, 49 (01) : 49 - 84
  • [47] Au/p-Si Schottky junction solar cell: Effect of barrier height modification by InP quantum dots
    Halder, Nripendra N.
    Biswas, Pranab
    Kundu, Souvik
    Banerji, P.
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2015, 132 : 230 - 236
  • [48] Strong barrier effect on the conversion efficiency of solar cells with buried type-II quantum dots
    Kechiantz, A. M.
    Sun, K. W.
    Kechiyants, H. M.
    Kocharyan, L. M.
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2007, 22 (06) : 616 - 623
  • [49] Indium-tin-oxide/GaAs Schottky barrier solar cells with embedded InAs quantum dots
    Kim, Ho Sung
    Park, Min Su
    Kim, Sang Hyeon
    Park, Suk In
    Song, Jin Dong
    Kim, Sang Hyuck
    Choi, Won Jun
    Park, Jung Ho
    THIN SOLID FILMS, 2016, 604 : 81 - 84
  • [50] Reducing Photovoltage Loss in Inverted Perovskite Solar Cells by Quantum Dots Alloying Modification at Cathode Contact
    Wang, He
    Song, Yilong
    Dang, Song
    Jiang, Nairong
    Feng, Jing
    Tian, Wenjing
    Dong, Qingfeng
    SOLAR RRL, 2020, 4 (03)