Ternary Jordan ring derivations on Banach ternary algebras: A fixed point approach

被引:0
|
作者
Gordji, Madjid Eshaghi [1 ]
Bazeghi, Shayan [1 ]
Park, Choonkil [2 ]
Jang, Sun Young [3 ]
机构
[1] Semnan Univ, Dept Math, POB 35195-363, Semnan, Iran
[2] Hanyang Univ, Res Inst Nat Sci, Seoul 133791, South Korea
[3] Univ Ulsan, Dept Math, Ulsan 680749, South Korea
关键词
Hyers-Ulam stability; ternary ring derivation; Banach ternary algebra; fixed point method; ternary Jordan ring derivation; ASTERISK-HOMOMORPHISMS; FUNCTIONAL-EQUATIONS; STABILITY; SUPERSTABILITY;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Let A be a Banach ternary algebra. An additive mapping D : (A,[]) -> (A,[]) is called a ternary Jordan ring derivation if D([xxx]) = [D(x)xx] + [xD(x)x] + [xxD(x)] for all x is an element of A. In this paper, we prove the Hyers-Ulam stability of ternary Jordan ring derivations on Banach ternary algebras.
引用
收藏
页码:829 / 834
页数:6
相关论文
共 50 条