The impact of multinationality on firm value: A comparative analysis of machine learning techniques

被引:37
|
作者
Kuzey, Cemil [1 ]
Uyar, Ali [1 ]
Delen, Dursun [2 ]
机构
[1] Fatih Univ, Dept Management, TR-34500 Istanbul, Turkey
[2] Oklahoma State Univ, Spears Sch Business, Dept Management Sci & Informat Syst, Stillwater, OK 74078 USA
关键词
Machine learning; Predictive analytics; Decision trees; Artificial neural networks; Sensitivity analysis; Firm value; Multinationality; ARTIFICIAL NEURAL-NETWORK; BANKRUPTCY PREDICTION; VALUE RELEVANCE; AGENCY COSTS; CLASSIFICATION; INDUSTRIAL; DIVERSIFICATION; OWNERSHIP; KNOWLEDGE; CORPORATIONS;
D O I
10.1016/j.dss.2013.11.001
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this study, the impact of multinationality (as measured by foreign sales ratio) and fourteen other financial indicators on firm value (characterized by market capitalization and market-to-book ratio) for the period of 1997-2011 was investigated using two popular machine learning techniques: decision trees and artificial neural networks. We divided the time period of 1997-2011 into two periods; 1997-2004 and 2005-2011 to investigate the robustness of results pre- and post-IFRS implementation. To determine the relative importance of factors as the predictors of firm value, first, a number of classification models are developed; then, the information fusion based sensitivity analysis is applied to these classification models to identify the ranked order of the independent variables. Among the independent variables, multinationality was found to determine firm value only moderately. In addition to multinationality, other financial characteristics such as firm size (as measured by natural logarithm of assets), leverage, liquidity, and profitability were consistently found to be affecting firm value. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:127 / 142
页数:16
相关论文
共 50 条
  • [21] A Comparative Analysis of Machine Learning Techniques for IoT Intrusion Detection
    Vitorino, Joao
    Andrade, Rui
    Praca, Isabel
    Sousa, Orlando
    Maia, Eva
    FOUNDATIONS AND PRACTICE OF SECURITY, FPS 2021, 2022, 13291 : 191 - 207
  • [22] A Comparative Analysis of Data sets using Machine Learning Techniques
    Abhilash, C. B.
    Rohitaksha, K.
    Biradar, Shankar
    SOUVENIR OF THE 2014 IEEE INTERNATIONAL ADVANCE COMPUTING CONFERENCE (IACC), 2014, : 24 - 29
  • [23] Mortality Prediction using Machine Learning Techniques: Comparative Analysis
    Verma, Akash
    Goyal, Shreya
    Thakur, Shridhar Kumar
    Gupta, Archit
    Gupta, Indrajeet
    PROCEEDINGS OF THE 2019 IEEE 9TH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTING (IACC 2019), 2019, : 230 - 234
  • [24] Comparative Analysis of Machine Learning Techniques for Island Heightmap Generation
    Demergis, Dimitri
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [25] A Comparative Analysis of Machine Learning Techniques for Cyberbullying Detection on Twitter
    Muneer, Amgad
    Fati, Suliman Mohamed
    FUTURE INTERNET, 2020, 12 (11) : 1 - 21
  • [26] Comparative Analysis of Machine Learning Techniques Using Predictive Modeling
    Khandelwal, Ritu
    Goyal, Hemlata
    Shekhawat, Rajveer S.
    Recent Advances in Computer Science and Communications, 2022, 15 (03) : 466 - 477
  • [27] A comparative study of hybrid machine learning techniques for customer lifetime value prediction
    Tsai, Chih-Fong
    Hu, Ya-Han
    Hung, Chia-Sheng
    Hsu, Yu-Feng
    KYBERNETES, 2013, 42 (03) : 357 - 370
  • [28] Comparative Analysis of Machine Learning Techniques in Assessing Cognitive Workload
    Elkin, Colin
    Devabhaktuni, Vijay
    ADVANCES IN NEUROERGONOMICS AND COGNITIVE ENGINEERING, 2020, 953 : 185 - 195
  • [29] Comparative Analysis of Machine Learning Techniques for Cryptocurrency Price Prediction
    Salehi, Sara
    JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES, 2024, 48 (02) : 341 - 352
  • [30] A comparative analysis of the automatic modeling of Learning Styles through Machine Learning techniques
    Ferreira, Lucas D.
    Spadon, Gabriel
    Carvalho, Andre C. P. L. F.
    Rodrigues-, Jose F., Jr.
    2018 IEEE FRONTIERS IN EDUCATION CONFERENCE (FIE), 2018,