Nitric oxide-induced adenosine inhibition of hippocampal synaptic transmission depends on adenosine kinase inhibition and is cyclic GMP independent

被引:10
|
作者
Arrigoni, Elda [1 ]
Rosenberg, Paul A.
机构
[1] Beth Israel Deaconess Med Ctr, Dept Neurol, Boston, MA 02215 USA
[2] Childrens Hosp, Dept Neurol, Boston, MA 02215 USA
[3] Childrens Hosp, Neurobiol Program, Boston, MA 02215 USA
[4] Harvard Univ, Sch Med, Program Neurosci, Boston, MA 02115 USA
关键词
evoked field potentials; in vitro; rats; sleep; zaprinast;
D O I
10.1111/j.1460-9568.2006.05124.x
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Adenosine is an important inhibitory neuromodulator that regulates neuronal excitability. Several studies have shown that nitric oxide induces release of adenosine. Here we investigated the mechanism of this release. We studied the effects of nitric oxide on evoked field excitatory postsynaptic potentials (fEPSPs) recorded in the CA1 area of rat hippocampal slices. The nitric oxide donor 1,1-diethyl-2-hydroxy-2-nitroso-hydrazine sodium (DEA/NO; 100 mu M) depressed the fEPSP by 77.6 +/- 4.1%. This effect was abolished by the adenosine A1 antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX; 400 nM), indicating that the nitric oxide effect was mediated by adenosine accumulation. The DEA/NO effect was unaltered by the 5'-ectonucleotidase inhibitor alpha,beta-methylene-adenosine 5'-diphosphate (AMP-CP; 100 mu M), indicating that extracellular adenosine did not derive from ATP or cAMP release. The guanylyl cyclase inhibitor 1H-[1,2,4]oxadiazole[4,3-a]quinoxaline-1-one (ODQ; 5 mu M) did not affect nitric oxide depression of the fEPSPs, indicating that nitric oxide-mediated adenosine release was not mediated through a cGMP signaling cascade. This conclusion was confirmed by the observation that 8-(4-chlorophenylthio)-guanosine-3',5'-cyclic monophosphate (8-pCPT-cGMP; 1 mM) reversibly depressed the fEPSP by 24.9 +/- 4.5%, but this effect was not blocked by adenosine antagonists. Adenosine kinase inhibitor 5-iodotubercidin (ITU; 7 mu M) occluded the nitric oxide effects by 74%, suggesting that inhibition of adenosine kinase activity contributes to adenosine release. In conclusion, exogenous nitric oxide evokes adenosine release by a cGMP-independent pathway. Intracellular cGMP elevation partially inhibits the fEPSP but not through adenosine release. Although a direct block of adenosine kinase by nitric oxide can not be excluded, the depression of adenosine kinase activity may be due to inhibition by its own substrate adenosine.
引用
收藏
页码:2471 / 2480
页数:10
相关论文
共 50 条
  • [31] Inhibition of nitric oxide-induced apoptosis by nicotine in oral epithelial cells
    Abhijit G. Banerjee
    Velliyur K. Gopalakrishnan
    Jamboor K. Vishwanatha
    Molecular and Cellular Biochemistry, 2007, 305 : 113 - 121
  • [32] Inhibition of nitric oxide-induced apoptosis by nicotine in oral epithelial cells
    Banerjee, Abhijit G.
    Gopalakrishnan, Velliyur K.
    Vishwanatha, Jamboor K.
    MOLECULAR AND CELLULAR BIOCHEMISTRY, 2007, 305 (1-2) : 113 - 121
  • [33] Thioredoxin restores nitric oxide-induced inhibition of protein kinase C activity in lung endothelial cells
    Kahlos, K
    Zhang, JL
    Block, ER
    Patel, JM
    MOLECULAR AND CELLULAR BIOCHEMISTRY, 2003, 254 (1-2) : 47 - 54
  • [34] CYCLIC AMP-DEPENDENT AND INDEPENDENT INHIBITION OF LIPOLYSIS BY ADENOSINE AND DECREASED PH
    HJEMDAHL, P
    FREDHOLM, BB
    ACTA PHYSIOLOGICA SCANDINAVICA, 1976, 96 (02): : 170 - 179
  • [35] OSTEOCLASTIC INHIBITION - AN ACTION OF NITRIC-OXIDE NOT MEDIATED BY CYCLIC-GMP
    MACINTYRE, I
    ZAIDI, M
    ALAM, ASMT
    DATTA, HK
    MOONGA, BS
    LIDBURY, PS
    HECKER, M
    VANE, JR
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1991, 88 (07) : 2936 - 2940
  • [36] ADENOSINE KINASE AND ADENOSINE-DEAMINASE INHIBITION MODULATE SPINAL ADENOSINE-INDUCED AND OPIOID AGONIST-INDUCED ANTINOCICEPTION IN MICE
    KEIL, GJ
    DELANDER, GE
    EUROPEAN JOURNAL OF PHARMACOLOGY, 1994, 271 (01) : 37 - 46
  • [37] Nitric oxide-induced release of acetylcholine in the nucleus accumbens, role of cyclic GMP, glutamate, and GABA
    Prast, H
    Tran, MH
    Fischer, H
    Philippu, A
    JOURNAL OF NEUROCHEMISTRY, 1998, 71 (01) : 266 - 273
  • [38] DISSOCIATION OF CYCLIC-GMP LEVEL AND NITRIC OXIDE-INDUCED INHIBITORY RESPONSES IN RAT COLON
    HATA, F
    SUTHAMNATPONG, N
    KANADA, A
    MAEHARA, T
    TAKEUCHI, T
    YAGASAKI, O
    JAPANESE JOURNAL OF PHARMACOLOGY, 1992, 58 : P387 - P387
  • [39] Changes in hippocampal adenosine efflux, ATP levels, and synaptic transmission induced by increased temperature
    Masino, SA
    Latini, S
    Bordoni, F
    Pedata, F
    Dunwiddie, TV
    SYNAPSE, 2001, 41 (01) : 58 - 64
  • [40] Nitric oxide-stimulated increase in extracellular adenosine accumulation in rat forebrain neurons in culture is associated with ATP hydrolysis and inhibition of adenosine kinase activity
    Rosenberg, PA
    Li, Y
    Le, MN
    Zhang, YM
    JOURNAL OF NEUROSCIENCE, 2000, 20 (16): : 6294 - 6301