A symmetric finite volume scheme for selfadjoint elliptic problems

被引:25
|
作者
Liang, SD
Ma, XL
Zhou, AH
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Inst Computat Math & Sci Engn Comp, Beijing 100080, Peoples R China
[2] Chinese Acad Sci, Acad Math & Syst Sci, Inst Syst Sci, Beijing 100080, Peoples R China
基金
中国国家自然科学基金;
关键词
finite element; finite volume; post-processing; symmetric scheme;
D O I
10.1016/S0377-0427(02)00428-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Based on a linear finite element space, a symmetric finite volume scheme for a self-adjoint elliptic boundary-value problem is proposed. Error estimates in L-2-norm, L-infinity-norm, and L'-norm are derived. Some post-processing techniques are also provided. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:121 / 136
页数:16
相关论文
共 50 条
  • [41] Symmetric finite volume schemes for eigenvalue problems in arbitrary dimensions
    Xiaoying Dai
    Zhang Yang
    Aihui Zhou
    Science in China Series A: Mathematics, 2008, 51 : 1401 - 1414
  • [42] Convergence of an explicit finite volume scheme for first order symmetric systems
    Jean-Paul Vila
    Philippe Villedieu
    Numerische Mathematik, 2003, 94 : 573 - 602
  • [43] Convergence of an explicit finite volume scheme for first order symmetric systems
    Vila, JP
    Villedieu, P
    NUMERISCHE MATHEMATIK, 2003, 94 (03) : 573 - 602
  • [44] A jump condition capturing finite difference scheme for elliptic interface problems
    Wang, WC
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2004, 25 (05): : 1479 - 1496
  • [45] Superconvergence of least-squares mixed finite element for symmetric elliptic problems
    Chen, YP
    Zhang, MP
    APPLIED NUMERICAL MATHEMATICS, 2004, 48 (02) : 195 - 204
  • [46] The hybrid Wilson finite volume method for elliptic problems on quadrilateral meshes
    Zhang, Yuanyuan
    Yang, Min
    Chen, Chuanjun
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2019, 45 (01) : 429 - 452
  • [47] The hybrid Wilson finite volume method for elliptic problems on quadrilateral meshes
    Yuanyuan Zhang
    Min Yang
    Chuanjun Chen
    Advances in Computational Mathematics, 2019, 45 : 429 - 452
  • [48] Convergence of the discontinuous finite volume method for elliptic problems with minimal regularity
    Liu, Jiangguo
    Mu, Lin
    Ye, Xiu
    Jari, Rabeea
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2012, 236 (17) : 4537 - 4546
  • [49] A Finite Volume Method to Solve the Ill-Posed Elliptic Problems
    Sheng, Ying
    Zhang, Tie
    MATHEMATICS, 2022, 10 (22)
  • [50] Post-processing of Fluxes for Finite Volume Methods for Elliptic Problems
    Cheng, Hanz Martin
    FINITE VOLUMES FOR COMPLEX APPLICATIONS IX-METHODS, THEORETICAL ASPECTS, EXAMPLES, FVCA 9, 2020, 323 : 133 - 141