The Complexity of Theorem Proving in Circumscription and Minimal Entailment

被引:0
|
作者
Beyersdorff, Olaf [1 ]
Chew, Leroy [1 ]
机构
[1] Univ Leeds, Sch Comp, Leeds LS2 9JT, W Yorkshire, England
来源
关键词
PROOFS;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We provide the first comprehensive proof-complexity analysis of different proof systems for propositional circumscription. In particular, we investigate two sequent-style calculi: MLK defined by Olivetti [28] and CIRC introduced by Bonatti and Olivetti [8], and the tableaux calculus NTAB suggested by Niemela [26]. In our analysis we obtain exponential lower bounds for the proof size in NTAB and CIRC and show a polynomial simulation of CIRC by MLK. This yields a chain NTAB <(p) CIRC <(p) MLK of proof systems for circumscription of strictly increasing strength with respect to lengths of proofs.
引用
收藏
页码:403 / 417
页数:15
相关论文
共 50 条
  • [31] Advances in theorem proving
    Kientzle, T
    DR DOBBS JOURNAL, 1997, 22 (03): : 16 - 16
  • [32] Theorem Proving Modulo
    Gilles Dowek
    Thérèse Hardin
    Claude Kirchner
    Journal of Automated Reasoning, 2003, 31 : 33 - 72
  • [33] Unsound theorem proving
    Lynch, C
    COMPUTER SCIENCE LOGIC, PROCEEDINGS, 2004, 3210 : 473 - 487
  • [34] Automated theorem proving
    Plaisted, David A.
    WILEY INTERDISCIPLINARY REVIEWS-COGNITIVE SCIENCE, 2014, 5 (02) : 115 - 128
  • [35] An algebraic approach to the complexity of propositional circumscription
    Nordh, G
    Jonsson, P
    19TH ANNUAL IEEE SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE, PROCEEDINGS, 2004, : 367 - 376
  • [36] THE COMPLEXITY OF FORMAL PROVING
    洪加威
    ScienceinChina,SerA., 1984, Ser.A.1984 (10) : 1046 - 1054
  • [37] THE COMPLEXITY OF FORMAL PROVING
    HONG, J
    SCIENTIA SINICA SERIES A-MATHEMATICAL PHYSICAL ASTRONOMICAL & TECHNICAL SCIENCES, 1984, 27 (10): : 1046 - 1054
  • [38] THE COMPLEXITY OF FORMAL PROVING
    洪加威
    Science China Mathematics, 1984, (10) : 1046 - 1054
  • [39] On the complexity of entailment in propositional multivalued logics
    Cadoli, M
    Schaerf, M
    ANNALS OF MATHEMATICS AND ARTIFICIAL INTELLIGENCE, 1996, 18 (01) : 29 - 50
  • [40] On the limits of the communication complexity technique for proving lower bounds on the size of minimal NFA's
    Hromkovic, Juraj
    Petersen, Holger
    Schnitger, Georg
    THEORETICAL COMPUTER SCIENCE, 2009, 410 (30-32) : 2972 - 2981